Fitting a Linear-Linear Piecewise Growth Mixture Model with Unknown Knots

Dr. Nidhi Kohli, *University of Minnesota*

Friday, December 4, 2015

University of Minnesota, Peik Hall Room 28
University of Nebraska-Lincoln, TEAC Room 112
University of Alberta, Education Centre North Room 6-1110
University of Iowa, Lindquist Center Room N221
University of Maryland, Benjamin Building Room 3233

2:30 – 4 p.m. (CDT)

A linear–linear piecewise growth mixture model (PGMM) is appropriate for analyzing segmented change in individual behavior over time, where the data come from a mixture of two or more latent classes, and the underlying growth trajectories in the different segments of the developmental process within each latent class are linear. A PGMM allows the knot (change point), the time of transition from one phase to another, to be estimated (when it is not known *a priori*) along with the other model parameters. To assist researchers in deciding which estimation method is most advantageous, the current research compares two popular approaches to inference for PGMMs: maximum likelihood (ML) via an expectation–maximization (EM) algorithm, and Markov chain Monte Carlo (MCMC) for Bayesian inference. The results show that MCMC Bayesian parameter estimation outperformed ML via EM in nearly every simulation scenario. The Bayesian procedure is illustrated by fitting a PGMM model to ECLS-K math achievement data.

If you have questions about this seminar, contact Professor Mark Davison, mld@umn.edu.

To be notified about future seminars, contact sawye100@umn.edu.

The CanAm Online Symposium is a series of presentations on advanced measurement and research methods in education. It is sponsored by the Centre for Research in Applied Measurement and Evaluation, Department of Educational Psychology, University of Alberta; the Quantitative Foundations of Education Program, Department of Educational Psychology, University of Iowa; the Measurement, Statistics, and Evaluation Program, Department of Human Development and Quantitative Methods, University of Maryland; the Quantitative Methods in Education Track, Department of Educational Psychology, University of
Minnesota; and the Quantitative, Qualitative, and Psychometric Methods Program, Department of Educational Psychology, University of Nebraska-Lincoln. In 2015-16, the Symposium will include four online seminars.