Identifying Observable Outcomes in Game-Based Assessments

Russell G. Almond Valerie J. Shute Seyfullah Tingir Seyedahmad Rahimi

Educational Psychology and Learning Systems College of Education Florida State University

Maryland Assessment Research Conference, 2018

Thanks

- Bill & Melinda Gates Foundation U.S. Programs Grant Number #0PP1035331
- National Science Foundation, DIP 037988
- Institute of Educational Science, Goal 1 039019
 - Fengfeng Ke
 - Adam LaMee
 - Don Franceshetti*
- Weinan Zhao*
- Xinhao Xu*

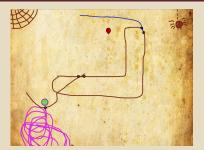
*Previously involved with the project

- Mathew
 - Martens
- Chen Sun
- Xi Lu
- Ginny Smith

• Lukas Liu

• Curt Fulwider*

- Megan Bayles*
- Buckley Guo*
- Jiawei Li
- Jordan Charles
- Renata Kuba



Almond et al. (FSU)

MARC

Physics Playground

Example Level and Solution from *Physics Playground* Version 1. *Player* Goal: Get the ball to the balloon by drawing ramps, levers, springboards and pendulums.

Project Goals:

- Inference about conceptual physics
- Adaptive Sequencing of Levels
- Adaptive Provision of Learning Supports

Need to infer state of physics understanding from game logs.

Almond et al. (FSU)

Four Elements of Assessment Design

- Define a *Construct map* for the skills to be assessed. (Proficiency/Competency) Model)
- Describe *evidence* that a student has the constructs (Evidence Model)
- 3 Create designs for *tasks* where the evidence can be observed (Task Model)
- Greate a (Assessment/Lesson)
 plan for those activities. (Assembly Model)

<ロト <回ト < 三ト < 三ト

Four Processes of Assessment Delivery

- Presentation Process Present the task and log events.
- ② Evidence Identification (EIP) — Extract key features (*observables*) from the stream of logged events.
- 3 Accumulate Evidence (EAP) — Enter observed outcomes into the measurement model and locate player the construct map.
- Activity Selection Bay on player's current location select next activity.

Proc4 Messages

```
1
\mathbf{2}
     app: "ecd://epls.coe.fsu.edu/PP",
    uid: "Student 1",
3
     context: "SpiderWeb",
4
\mathbf{5}
     sender: "Evidence Identification",
    message: "Task Observables",
6
    timestamp: "2018-10-22 18:30:43
7
         EDT",
8
    data:{
9
       trophy: "gold",
0
       solved: true,
1
       objects: 10,
       agents: ["ramp", "ramp", "
\mathbf{2}
           springboard"],
3
       solutionTime: {time:62.25, units
           :"secs"}
4
5
```

- Generic model of messages passed between processes.
- Application (app) header defines vocabulary used in other fields.
- Context equals task in this example.
- Data field can hold any number/kind of object.

< D > < B > < E > < E >

Four Processes in Physics Playground

- *Presentation Process* Client–server system which displays game levels and learning supports.
 - Written in Unity, with videos linked from YouTube.
 - $\circ\,$ Logs events in Learning Locker (R) learning record store.
 - Identifies agents of motion from drawings (ramp, springboard, lever, pendulum)
- *Evidence Identification* Needs to generate a list of *observables* from the learning record store.
 - $\bullet \ New \ system \ needed \ for \ this.$
- *Evidence Accumulation* Bayesian Network takes observables and updates probabilities that student has skills
 - Written in Peanut and Netica® https://pluto.coe.fsu.edu/RNetica.
- Activity Selection Uses expected weight of evidence to indicate next level to use.

ECD design objects used for *Physics Playground*

Construct Ladders

- Construct is implicitly defined through tasks.
- Construct Map (Wilson, 2006). For High, Med and Low levels:
 - What kind of *tasks*?
 - What qualities of *performance*?
 - What *personal* qualities?
- Evidence column: provides ideas for how to test.
- Complete definition includes multiple ladders and relationship between them.
 - Competencies are usually defined hierarchically (Math and Science).
- Target population is important.
- Joint effort of Experts and Design Team

イロト イヨト イヨト イヨ

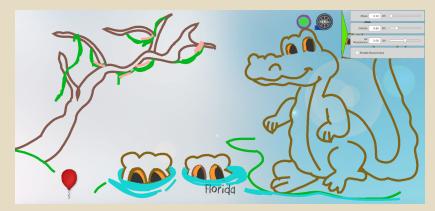
Variable Definition Spreadsheet

Table 1: ES S	preadsheet (Excer			
Compe-	Sub-	Description	Evidence	
tency	competency			
Force and	Newton's 1st	Static equilibrium $(a=0)$	Player applies or adjusts a force (e.g.,	
Motion	Law	and $v=0$)	nudge, blow, gravity, air resistance) to	
			keep an object stationary in at least one	
			dimension.	
Force and	Newton's 2nd	Net force and accelera-	Player applies or adjusts a force acting	
Motion	Law	tion are directly related	on an object to cause it to accelerate at	
			a desired rate.	
Linear	Properties of	Momentum is directly	Player adjusts the mass an object to af-	
Momentum	momentum	related to mass	fect the amount of momentum it trans-	
			fers to a second object after the two col-	
			lide.	
Energy	Energy can transfer	Energy can transform	Player changes parameters (e.g., mass,	
		from one type to another	position, speed) to transform more or	
		(e.g., GPE to KE)	less energy of one type to another (e.g.,	
			KE, GPE, EPE) of the same object.	
Torque	Properties of	Force and torque are di-	Player adjusts the magnitude of a force	
	torque	rectly related.	to cause a corresponding change in the	
			magnitude of a torque.	
Science and	Use iterative	Solve a problem by mak-	Player makes successive adjustments of	
Engineering	design to solve	ing variations on previ-	the same parameter to solve a level.	
Practices	a problem	ous strategies	SIMIL	

4 E

Design

Evidence: Data linked to a Ladder

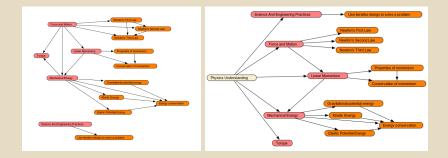


- Define *observables* which are links between EIP and EAP.
- $\bullet\,$ Link observables to constructs in competency model, using Q-matrix.
- Specify rules for how observable values can be set from event log data.
- Check for coverage of the constructs in the assessment.
 - Discovered we didn't have enough coverage in Version 1!

Design

Manipulation Levels

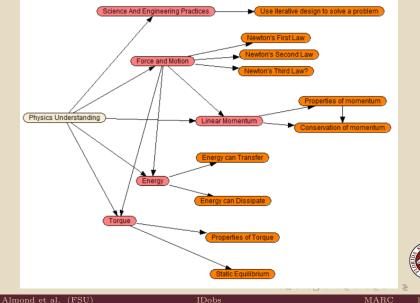
Goal: Get the ball to the balloon by manipulating the ball's mass, gravity, air resistance, and/or bounciness.


Learning Supports

- Version 2 includes explicit learning supports
- Show me the Physics
 - Applicable across multiple levels
 - Interactive Physics Definitions
 - Hewitt Videos
 - Physics Animations
- Show me the Solution
 - Level Specific Help
 - Hints: e.g., "Try drawing a lever."
 - Worked Examples
- Game control reviews

Design

Two Candidate Construct Models



- Gave experts two choices of construct model
- Discused alternatives

(日) (日) (日) (日) (日)

Design

Final (Version 6) Structure

-14/31

Expert-Based Conditional Probability tables

- Used DiBello (IRT-like) parameterizations.
- Modeling Team produced first pass numbers based on some general guesses.
- Want Physics experts to review work, but they are not familiar with our notation.
- Want to deliberately anchor experts towards high correlations between latent variables.
- Solution: Translate into natural language for expert review.
- Also, show table along with parameters so expert can see effect.
- Should have again given experts choices to select among.

Defining Observables

- List possible observables associated with each level.
- Link observables to levels in a spreadsheet.
- Produce operational definitions for observables:
 - When is a drawn object considered a lever? (This requires physics engine, so done in presentation process)
 - What constitutes an "attempt" if the observable is number of attempts? (This is done in evidence identification process)
- Set cut scores for counts and continuous variables used as ordinal variables in Bayes nets.
 - What are long, medium, and short completion times for level?
 - What are low, medium, and high number of manipulations for a slider?
 - These values will be linked to levels in Bayes net (so implemented in the Evidence Accumulation process)

(4) E (4) E (4) E

Design

Sample Observables

- Obs 1 What is the maximum value coin (gold, silver or none) that the player has earned for this level?
- Obs 2 Did the player manipulate the gravity slider?
- Obs 3 How many objects did the player draw?
- Obs 4 How much time (excluding time spent on learning supports) did the player spend on the level?
- Obs 5 Did the player attempt to draw a springboard?
- Obs 1 and 2 can be read directly from event stream.
- Obs 3 and 4 require keeping track of state of system.
- Obs 5 requires detailed knowledge of Physics engine: put in presentation process.

Learning Record Store

```
app:"ecd://coe.fsu.edu/EPLS/
   AssessmentName",
uid:"Student/User ID",
timestamp:"Time of event",
verb: "Action Keyword",
context: "Context ID",
object: "Object Keyword",
data:{
field1:"Value",
field2:["list", "of",
    values"],
 field3:{part1:"complex",
    part2:"object"}
```

- Simplified version of Learning Locker's xAPI format.
- Application (app) controls vocabulary for other fields.
- Verb and Object fields define what the event is.
- Context might be supplied in presentation or evidence identification.
- Data do not have defined schema.

<ロト < 同ト < 臣ト < 臣 >

• Stored in a document database (Mongo)

Determining Tasks from Event Traces

- *PP* engine does not include game level in context.
 - Events for level started/restarted.
 - Events for level successfully completed.
 - Events for level exited.
- If *task=game level*, then task must be inferred from event log.
- In four process model *task* was the granularity at which information was sent around cycle.
- In a simulator, a task may have many scoreable units (contexts).

Tasks versus Contexts

- Consider a Flight Simulator
- Task is fly from one airport to another.
- Embedded Contexts:
 - Pre-flight Checks
 - 2 Take-off
 - 3 Cruising
 - ④ Thunderstorm
 - Oruising
 - 6 Approach
 - ② Landing
- Context is inferred from state of system.
- Evidence Identification tracks state of system to determin context.

Tracking System State

```
uid: "Identifier",
context: "Task Name",
oldContext: "Task Name",
timers:{...},
flags:{...},
observables:{...}
```

- Timers are used to track time spent in various states
 - state.timers.name
- Flags are used for variables that won't be reported.
 - state.flags.name
- Observables are reported
 - state.observables.name
- Old Context allows noting when context has changed.
 - state.context, state.oldContext,

Types of Observables

• Final Observables (observables)

- Sent to evidence accumulation (EAP)
- Used for context-level feedback
- Logged for research purposes
- Intermediate Observables (Timers and Flags)
 - Used to calculate final observables
- ${\circ}\ {\rm ETS}{\rm 's}\ {\rm e-Rater}{\ensuremath{\mathbb{R}}}$
 - Intermediate observables count various writing errors
 - These are aggregated into Grammar, Usage, Mechanics and Style final observables
 - Final observables are added to regression model to get final score

< D > < B >

Rules of Evidence

{
ruleName:"Human readable
identifier",
doc:"Human language
description",
context:"Context or Group
Keyword",
verb:"Action Keyword or
ALL",
object:"Object Keyword or
ALL",
<pre>ruleType:"Type Keyword",</pre>
priority:"Numeric Value",
$condition: { \dots },$
$predicate: { \dots }$

- Rules must match on verb, object and context to be applicable.
 - Context groups allow rules to be used in many contexts (manipulation tasks)
- Conditions determine when rules fire
- Predicates define rule action
- Type and Priority are used for sequencing.

Rule Types and Priority

• Five Types of Rules are executed in sequence:

- State Rules—Update flags and timers.
- 2) Observable Rules—Update observables.
- 3 Context Rules—Check for changes in contexts
- ④ Trigger Rules—Send messages to other processes.
- So Reset Rules—Clean up state when context changes.
- Rule priority determines sequence within a type.
 - Lower numbers first.
 - Resolves conflicts
 - Satisfy preconditions

Conditions

```
condition:{
    <field1>:<value1>,
    <field2>:[<value-list>],
    <field3>:{"?op":<value3>},
    "?where":<function>,
    ...
}
```

- Basic test is if field has specified value, or in list of values.
- Field can refer to state or event (as can value).
- Op list includes:
 - ?eq, ?ne, ?gt, ?gte, ?lt, and ?lte
 - ?in, ?nin
 - ?exists, ?isnull, ?isna
 - ?any, ?all
 - ?not, ?and, ?or
 - ?regex
- ?where allows calling arbitrary R functions

25 / 31

Predicates

```
predicate:{
   <update operator1>:{ <
       field1>: <value1>,
       · · · },
   "!set":{ state.flags.<
       logical>: true},
   "!set":{ state.timers.<
       name >. running: true }
   "!incr":{ state.flags.<
       count >: 1,
   "!setCall": { state.flags
       .<name>: <function>}
       ,
   . . .
```

- Predicates only change fields in state
 - Can reference data in event
- A number of different modification operators.
 - !set, !unset
 - !incr, !decr, !mult, !div,
 !min, !max
 - !addToSet, !pullFromSet,
 !push, !pop

<ロト <回ト < 三ト < 三ト

- For timers can set state.timers.name.running state.timers.name.time
- !setCall runs R code.

Extended Example: Counting Air Slider Manipulations

	1
Initial State:	4
{	
uid: "Test0",	4
context: "Air Level 1",	Ę
<pre>timers:{},</pre>	6
<pre>flags:{</pre>	7
airUsed: true,	
airOldVal: 17,	8
},	ę
$observables: \{$	
airManip:1	
}	10
}	1
	12
	13
	14

```
Event:
```

```
app:"https://epls.coe.fsu.
   edu/PPTest",
uid: "Test0",
verb: "Manipulate",
object: "Slider",
context: "Air Level 1",
timestamp:"2018-09-25 12:1
   2:28 EDT",
data:
  gemeObjectType: "
      AirResistanceValueManipu
  oldValue: 0,
  newValue: 5,
  method: "input"
```

Extended Example (pt II)

Rule:

1 2

3

4 5

7

3

9

)

2

3

4

5 6

```
name: "Count Air Resistance Manipulations",
doc: "Increment counter if slider changed.",
verb: "Manipulate",
object: "Slider",
context: "Manip Lvls",
ruleType: "Observable",
priority: 5,
conditions: {
  event.data.gemeObjectType:"AirResistanceValueManipulator
      н
  event.data.oldValue:{"?ne":event.data.newValue}
},
predicate:
  "!incr":{state.observables.airManip:1}
```

Extended Example (pt III)

Result:

```
1
2
    uid: "Test0",
    context: "Air Level 1",
3
    timers:{},
\mathbf{4}
5
    flags:{
       airUsed: false,
7
       airOldVal: "NA"
    },
3
    observables:{
9
       airManip:1
)
1
2
```

Ξ

- ECD, particularly the *Q*-matrix, is useful for managing development work.
- It is better to give experts two choices and have them pick.
- Building evidence rules with their test sets.
- Evidence Rules can be sorted
 - By Observable
 - By Event

A E > A E

Software Frameworks

- Game demo and level editor: https://pluto.coe.fsu.edu/ppteam/pp-links
- Peanut and RNetica https://pluto.coe.fsu.edu/RNetica
- Proc4, EIEvent and EABN https://pluto.coe.fsu.edu/Proc4
 Still in early development.

31/31

MARC