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Abstract

■ Maturation of basal ganglia (BG) and frontoparietal circuitry
parallels developmental gains in working memory (WM).
Neurobiological models posit that adult WM performance is
enhanced by communication between reward-sensitive BG
and frontoparietal regions, via increased stability in the main-
tenance of goal-relevant neural patterns. It is not known
whether this reward-driven pattern stability mechanism may
have a role in WM development. In 34 young adolescents
(12.16–14.72 years old) undergoing fMRI, reward-sensitive
BG regions were localized using an incentive processing task.
WM-sensitive regions were localized using a delayed-response
WM task. Functional connectivity analyses were used to exam-
ine the stability of goal-relevant functional connectivity patterns
during WM delay periods between and within reward-sensitive
BG and WM-sensitive frontoparietal regions. Analyses revealed
that more stable goal-relevant connectivity patterns between

reward-sensitive BG and WM-sensitive frontoparietal regions
were associated with both greater adolescent age and WM
ability. Computational lesion models also revealed that func-
tional connections to WM-sensitive frontoparietal regions
from reward-sensitive BG uniquely increased the stability of
goal-relevant functional connectivity patterns within fronto-
parietal regions. Findings suggested (1) the extent to which
goal-relevant communication patterns within reward-
frontoparietal circuitry are maintained increases with adoles-
cent development and WM ability and (2) communication
from reward-sensitive BG to frontoparietal regions enhances
the maintenance of goal-relevant neural patterns in adoles-
cents’ WM. The maturation of reward-driven stability of
goal-relevant neural patterns may provide a putative mecha-
nism for understanding the developmental enhancement of
WM. ■

INTRODUCTION

Structural and functional connections within cortico-
basal ganglia (BG) circuitry are still developing during ad-
olescence (Insel, Kastman, Glenn, & Somerville, 2017;
Heller, Cohen, Dreyfuss, & Casey, 2016; Simmonds,
Hallquist, Asato, & Luna, 2014; Lebel & Beaulieu,
2011). Greater volume and strength of anatomical con-
nections between BG and frontoparietal regions are pre-
dictive of age-related increases in working memory (WM)
performance across youth and young adults (Darki &
Klingberg, 2015). These regions also demonstrate age-
related, performance-related, and longitudinal changes
to functional responses during WM in developmental
imaging studies (Simmonds, Hallquist, & Luna, 2017;
Ullman, Almeida, & Klingberg, 2014; Satterthwaite et al.,
2012). However, the precise role of cortico-BG circuitry
in WM development is not known. We hypothesized that
communication between reward-sensitive BG and WM-
sensitive frontoparietal regions is fundamental for en-
hancing the maintenance of goal-relevant representations
during adolescent development. To investigate this

hypothesis, fMRI was used in a group of young adoles-
cents. The stability of goal-relevant functional connectiv-
ity patterns was assessed during WM delay periods
between and within reward-sensitive BG and WM-
sensitive frontoparietal regions.
WM ability improves from childhood to young adult-

hood (Nemmi et al., 2018; Simmonds et al., 2017; Ullman
et al., 2014; Brockmole & Logie, 2013; Satterthwaite et al.,
2012, 2013;Crone,Wendelken,Donohue, Van Leijenhorst,
& Bunge, 2006; Cowan et al., 2005; Gathercole, Pickering,
Ambridge, & Wearing, 2004; Barrouillet & Camos, 2001;
Towse, Hitch, & Hutton, 1998). The exact neural mecha-
nisms contributing to age-related improvements in WM
are not known. However, neural correlates exist between
functions and structures of the developing brain and WM
(Davidow, Insel, & Somerville, 2018; Crone & Steinbeis,
2017; Luna, Marek, Larsen, Tervo-Clemmens, & Chahal,
2015). In developmental studies, functional imaging has
revealed age-related, performance-related, and longitudi-
nal changes in BG and frontoparietal responses during
WM performance. For example, across a sample of 8- to
22-year-olds performing an n-back task, ventral BG
BOLD activations were shown to peak in adolescent par-
ticipants (around ages 14–15 years; Satterthwaite et al.,
2012). In a sample spanning 6- to 20-year-olds, positive
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associations were observed between WM capacity and
frontoparietal BOLD activations during a visuospatial
WM task (Ullman et al., 2014). In this same study, in-
creased BOLD activations in BG and thalamus were also
predictive of developmental enhancement of WM perfor-
mance 2 years later. Furthermore, one study examined
BOLD activations across development using a delayed-
response task designed to isolate during different WM
phases (i.e., encoding, delay, retrieval [Rypma &
D’Esposito, 1999]; Simmonds et al., 2017). Here, WM
delay-period activations in BG and certain frontoparietal
regions both showed significant changes in activation as
youth aged from early to mid-adolescence (Simmonds
et al., 2017).
Models of the adult brain may offer one possible expla-

nation for the combined significance of BG and fronto-
parietal regions in adolescent WM development.
Neurobiological models of adult WM postulate that com-
munication between reward-sensitive BG (e.g., ventral
BG) and frontoparietal regions enhances the mainte-
nance of goal-relevant representations in WM (Frank &
Badre, 2011; O’Reilly, Herd, & Pauli, 2010; Reynolds &
O’Reilly, 2009; Gruber, Dayan, Gutkin, & Solla, 2006;
O’Reilly & Frank, 2006; see also O’Doherty et al., 2014;
Atallah, Lopez-Paniagua, Rudy, & O’Reilly, 2007).
Specifically, communication from reward-sensitive BG
to prefrontal and posterior (e.g., parietal) regions en-
hances the “stability,” or consistency, of encoded goal-
relevant neural patterns during WM-delay periods
(Frank & Badre, 2011; Gruber et al., 2006; O’Reilly &
Frank, 2006; cf. Li, Lindenderber, & Bäckmann, 2010;
Li, Lindenberger, & Sikström, 2001; Durstewitz,
Seamans, & Sejnowski, 2000). In turn, greater stability
of goal-relevant neural patterns during WM-delay periods
enhances performance by making goal-relevant circuits
more easily activated during retrieval cueing (Murray
et al., 2017; Stokes, 2016; Lansink et al., 2008; Mongillo,
Barak, & Tsodyks, 2008; Durstewitz et al., 2000; cf. Ezzyat
& Davachi, 2014; Tambini & Davachi, 2013; Hasselmo &
Giocomo, 2006). Because cortico-BG activations and
communication pathways are still maturing during ado-
lescence (Insel et al. , 2017; Heller et al., 2016;
Simmonds et al., 2014; Lebel & Beaulieu, 2011), age-
related or individual variation in brain development
may influence the ability for reward-sensitive BG to stabi-
lize goal-relevant neural patterns (cf. Zhou, Salinas,
Stanford, & Constantinidis, 2016; Zhou et al., 2016).
Although broader BG and frontoparietal responses

during WM change with age and are related to WM per-
formance in developmental samples (Simmonds et al.,
2017; Ullman et al., 2014; Satterthwaite et al., 2012), evi-
dence for a mechanism explaining the combined signifi-
cance of these regions in WM development has not yet
been demonstrated. Moreover, reward-sensitive BG dem-
onstrate functional and anatomical differences in adoles-
cents compared to children and adults, and these regions
undergo significant developmental changes in function

and structure at least until young adulthood (Davidow
et al., 2019; Schrueuders et al., 2018; Wierenga et al.,
2018; Satterthwaite et al., 2012, 2013; Somerville, Hare,
& Casey, 2011; see also Casey et al., 2018; Davidow
et al., 2018; Larsen & Luna, 2018; Luna et al., 2015). To
examine reward-driven pattern stability as one possible
explanation for BG and frontoparietal regions’ apparent
combined role in adolescent WM, this study used fMRI
in 34 young adolescents to examine functional connec-
tions between reward-sensitive BG and WM-sensitive
frontoparietal regions, during a WM task. Combining
functional activations from an incentive processing and
delayed-response task allowed us to independently local-
ize reward-sensitive BG regions that were active during
WM performance. The event-related, delayed-response
task also allowed us to isolate putative changes in func-
tional connectivity during WM encoding and delay pe-
riods (Rissman, Gazzaley, & D’Esposito, 2004).

We tested whether the stability of goal-relevant func-
tional connectivity patterns between reward-sensitive BG
and WM-sensitive frontoparietal regions was related to ad-
olescent WM development by assessing its correlations
with age and WM ability, as measured by a latent variable
of WM performance. Computational lesion modeling was
also used to examine one mechanism by which reward-
sensitive BG are hypothesized to enhance adult WM.
Specifically, lesion modeling tested whether adolescents’
communication signals from reward-sensitive BG in-
creased the stability of goal-relevant neural patterns main-
tained within WM-sensitive frontoparietal regions (Frank
& Badre, 2011; O’Reilly et al., 2010; Reynolds & O’Reilly,
2009; Gruber et al., 2006; O’Reilly & Frank, 2006).

METHODS

Participants and Procedure

Thirty-six young adolescents were recruited through social
media, fliers, and local schools to participate in this study.
Two adolescents failed to meet a priori defined criteria on
the prescan delayed-responseWM task (WM capacity score
of at least 3 [see below]); thus, relevant brain imaging data
were not collected from these individuals. Thirty-four par-
ticipants received the entire study protocol and were used
in analyses detailed here (n = 34, Mage = 13.72 [SEM =
0.102, range = 12.16–14.72], 58.82% female). Three
parents reported their adolescent’s use of psychostimulant
medication for attention-deficit hyperactivity disorder
(ADHD) (8.8%), which may affect reward-sensitive BG
responses or functional connections (Dukart et al., 2018).
Written consent was obtained from an accompanying par-
ent, and assent was obtained from the adolescent. Sample
size and age groups were determined based on similar, ad-
olescent WM imaging studies performed in our laboratory
(Finn et al., 2016; Leonard,Mackey, Finn, &Gabrieli, 2015).
Primary inclusion criteria included seventh or eighth grade
student at a public school, English proficiency, and

Hubbard et al. 1509



accompanying parent English and/or Spanish proficiency.
Primary exclusion criteria included MR contraindications,
history of autism spectrumdisorder or neurological disabil-
ity, or premature birth (< 34 weeks). Procedures were ap-
proved by the Massachusetts Institute of Technology
Committee on the Use of Human Subjects. Parents and ad-
olescents were compensated for their time.

This study was part of a larger project investigating fac-
tors influencing middle-school brain development and
achievement. For brevity, only study-specific procedures
are detailed here. Adolescents completed four WM tasks
([1] prescan and [2] in-scanner delay-response tasks, [3]
count span, and [4] n-back) and an incentive processing
task (IPT). Tasks were presented using PsychoPy2 soft-
ware (Pierce, 2007). Participants were trained on how
to complete tasks before executing the actual tasks. For
tasks presented within the MR environment, participants
were given additional opportunities for explanation on
task instructions before commencing scanning.

Prescan and In-scanner Delayed-Response
WM Tasks

We employed two Sternberg-type, delayed-response WM
tasks (Sternberg, 1966), which were consistent with sim-
ilar paradigms used across the lifespan (Simmonds et al.,
2017; Hubbard et al., 2014; Rissman et al., 2004; Rypma &
D’Esposito, 1999, 2000; Rypma, Prabhakaran, Desmond,
Glover, & Gabrieli, 1999; see Daniel, Katz, & Robinson,
2016). The first WM task was given to adolescents before

scanning. This prescan delayed-response WM task esti-
mated adolescents’ WM capacities. Estimated WM capac-
ities were then used to calibrate the second, in-scanner
delayed-response WM task (Shah et al., 2019). By
individually calibrating demand for the in-scanner
delayed-response WM task, we attempted to ensure that
adolescents’WM abilities were sufficiently challenged and
that individual differences in performance and activations
were not inflated by the demands of this task (Davidow
et al., 2018). For instance, reward-sensitive BG activations
in developmental samples are increased on accurate rela-
tive to inaccurate WM trials (Satterthwaite et al., 2012).
Using a WM task with standard demand conditions
could bias lower-ability adolescents to have fewer accu-
rate responses relative to high-ability adolescents, unduly
affecting activation in reward-sensitive BG. Conversely,
reward-sensitive BG activation to accurate responses in-
creases with more challenging demand conditions, dem-
onstrating that accurate responses to more challenging
conditions result in greater activations in reward-sensitive
BG (Satterthwaite et al., 2012).

Prescan Delayed-Response WM Task

The prescan WM task presented participants with lists of
three to seven letters (i.e., goal-relevant stimuli), which
participants needed to remember over an 8-sec delay pe-
riod. Participants were then asked to register a binary re-
sponse to a retrieval cue (Figure 1A). Each list size of
goal-relevant information was presented seven times for

Figure 1. (A) Example of a
single trial of delayed-response
WM tasks. Participants were
given 4 sec to encode a series of
letters (i.e., goal-relevant
stimuli). Participants needed to
maintain these goal-relevant
stimuli over an 8-sec delay
period. Participants were then
given 4 sec to respond via a
dominant-hand, button press
(no = index finger, yes =
middle finger) whether a
retrieval cue-letter matched a
letter in the encoded set. Note
that perceptual load was
balanced across WM task
epochs. Participants were
instructed only to respond
during retrieval cueing. (B)
Example of single trial from IPT
and different response feedback
conditions. Participants were
shown a cue and given 1.5 sec
to guess whether a forthcoming
number (0–9) was greater than
or less than 5. Response
feedback was experimentally
controlled so that task blocks
featured either mostly reward
or loss feedback.
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35 trials. Participants were instructed to emphasize speed
and accuracy in their responding to the retrieval cue. The
prescan WM task approximated WM capacity by adapting
a standard formula (McNab & Klingberg, 2008; Cowan,
2001). Here, K = S(H − FA), where S was the largest list
size that the participant could achieve with > 50% recog-
nition accuracy, H reflected correct detections (i.e., hits),
and FA reflected false detections (i.e., false alarms; Shah
et al., 2019). WM capacity estimates from this task indicated
a mean of 5.32 goal-relevant stimuli (see Table 1) could
be reliably remembered over the delay period. This esti-
mate is consistent with other reports of youth and young
adolescents’ WM capacities (Barrouillet & Camos, 2001;
Towse et al., 1998).

In-scanner Delayed-Response WM Task

WM capacity estimates were used to calibrate the in-
scanner WM task, which was identical to the prescan
WM task, except (1) intertrial intervals were jittered at
9, 10, or 11 sec to accommodate hemodynamic re-
sponses; (2) to-be-remembered list sizes were calibrated
based on each participant’s WM capacity estimate (three
demand conditions: two letters, K letters, and K + 1 let-
ters); (3) 10 trials were added to this task to enhance the
reliability of the fMRI signal; and (4) the task was broken
into four runs to allow for numerous opportunities for
short rests and communication between the MR operator
and the adolescent. Participants completed 45 trials of
this paradigm, which were equally distributed across de-
mand conditions. Time to complete four runs of this task
took approximately 20 min. Average percentage of accu-
rate responses and average RTs from this task were used
in subsequent analyses.

Additional WM Tasks and Latent
Variable Construction

Count Span

This task required participants to remember the number
of target shapes in an array while ignoring irrelevant

shapes (Cowan et al., 2005). After n arrays (n = 1–6),
participants were instructed to recall the number of tar-
gets, per array, in the order that these arrays were pre-
sented. There were 18 trials (three per array size).
Percentage of accurate trials was used as our primary var-
iable of interest from the count-span task.

n-Back

This task presented a single white letter on a black
screen, back-projected within the scanner. Participants
were trained to press a button every time the letter on
the current screen matched one presented one or two
letters preceding the current letter (1-back, 2-back). For
the 0-back condition, participants were instructed to re-
spond every time the letter “W” was presented on the
screen (Finn et al., 2016). Percentage of accurate trials
and RTs were used as the primary variables of interest
from the n-back task.

Latent WM Variable

The objective of the latent variable was to quantify com-
mon variance between the measures of WM performance
to create a single component that was more representa-
tive than any individual measure of our participants’ gen-
eral WM ability (see Cowan et al., 2005). A latent variable
was created from six outputs of all four WM tasks using
principal component analysis (PCA). The outputs chosen
are in Tables 1 and 2. RT for count span was not used in
these analyses because trial-level variation in RT was high
(range = 0.48–25 sec), and thus, we assumed that vari-
ance accounted for by individual differences in WM ability
in this measure was obfuscated by other factors (e.g., in-
dividual differences in one’s typing proficiency). Neither
RT nor percent accuracy from the prescan WM task was
included in latent variable analyses. The prescan WM task
was designed to challenge most participants with list
sizes well beyond their capabilities; thus, an aggregate
measure of accuracy or RT might not yield an accurate
assessment of WM ability (Baddeley, Logie, Bressi, Della
Salla, & Spinnler, 1986).

Mahalanobis distance was used to test for potential
multivariate outliers across the six selected WM perfor-
mance measures. One participant (Mahalanobis distance =
3.64 SDs) fell beyond the 95% upper confidence limit of
the multivariate distribution (3.36). This multivariate out-
lier was excluded from the PCA and subsequent WM per-
formance analyses. One participant was also excluded
from these analyses because they had no evidence of a
registered response for the entirety of the n-back task.

IPT

The IPT was adapted from the Human Connectome
Project (Barch et al., 2013). Reward conditions in IPTs re-
liably activate youth and adult ventral BG (Speer, Bhanji,

Table 1. Descriptive Statistics of Selected WM Performance
Measures

Measure Mean SEM Range

Count-span accuracy (%) 59.64 4.19 5.56–94.44

In-scanner WM accuracy (%) 87.66 1.56 68.43–100

In-scanner WM RT (sec) 1.52 0.05 1.11–2.19

n-back accuracy (%) 95.66 0.53 88.88–100

n-back 1-RT (sec) 0.66 0.032 0.33–1.11

Prescan WM capacity (K items) 5.32 1.12 3–7

Six WM measures selected for latent variable (WML) analyses and their
means, 1 SEM, and ranges.
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& Delgado, 2014; Forbes et al., 2009; May et al., 2004;
Tricomi, Delgado, & Fiez, 2004; Delgado, Nystrom,
Fissell, Noll, & Fiez, 2000; Figure 1B). This IPT has also
been shown to activate adolescent ventral BG (Hubbard
et al., 2020). Before the task began, participants were in-
formed that their responses would result in winning or
losing actual money. During scanning, participants
guessed via button presses whether a to-be-revealed
number (between 1 and 9) was greater than or less than
5. Participants then received an image of the actual num-
ber and visual feedback regarding whether they had
guessed correctly. During reward conditions, participants
were informed they guessed correctly and were shown
that they would have $1 added to their task winnings.
During loss conditions, participants were informed they
guessed incorrectly and that they would have $0.50 de-
ducted from their task winnings. Loss trials were half of
the magnitude of reward trials to account for greater sen-
sitivity of participants to loss compared to reward (e.g.,
Tversky & Kahneman, 1991). If the participant failed to
respond in the time allotted by the trial, the participant
was shown that he or she did not win or lose money for
that trial. The number of reward and loss trials was exper-
imentally controlled so that each 28-sec block featured
primarily reward or primarily loss trials; thus, all partici-
pants received the same number of reward and loss
blocks and the same task compensation. There were
eight trials per block. There were two types of experi-
mental blocks (28 sec/block) and a brief fixation period
in between blocks (3 sec). Block conditions were bal-
anced and pseudorandomized across two runs. Each
block type (reward, loss) was presented four times
(two times/run). Time to complete two runs of this task
was approximately 4 min.

Image Acquisition and Processing

Images were collected using a Siemens Prisma 3-T scan-
ner with a 64-channel head coil. Human Connectome

Project acquisition sequences were used (Van Essen
et al., 2012; cmrr.umn.edu/multiband). Head cushions
were used to limit participant head movement.
Participants were trained during a mock scanning session
to hold still during MRI acquisition and repeatedly re-
minded not to move during scanning. Participants were
given a finger pad, placed in their dominant hand, to reg-
ister responses to fMRI tasks.
One high-resolution, multiecho, magnetization-

prepared rapid gradient echo T1w image was acquired
along with an additional vNav setter for prospective mo-
tion correction. The vNav-enabled scan estimated motion
throughout the T1w scan and reacquired/replaced k-
space data unduly affected by motion (Tisdall et al.,
2012). T1w scans featured a 0.8-mm isotropic voxel size
with 320 slices, acquired in the sagittal orientation, repe-
tition time (TR)/echo time = 4000/1.06 msec. Task fMRI
images were acquired using 2-D, multiband, gradient-
recalled EPI. Sequences offered a 2.0-mm isotropic voxel
size with whole-brain coverage from 72 oblique, axial
slices, with TR/echo time = 800/37 msec and flip angle =
52°. Tasks acquired an even number of runs, with two dif-
ferent phase encoding directions (i.e., anterior–posterior
[AP], posterior–anterior [PA]). AP–PA spin echo field maps
were also acquired for additional distortion correction.
Anatomical and functional images were preprocessed

using fmriprep (v.1.1.4), including T1 bias-field correc-
tion, brain extraction, normalization to the ICBM 152
nonlinear template, tissue segmentation, and motion cor-
rection procedures (Esteban et al., 2019). Normalized
and extracted functional images were then spatially
smoothed using a 6-mm FWHM Gaussian kernel.
Functional frames were censored via AFNI’s 1d_tool.py
(Cox, 1996) Euclidean-norm approach with a head-
displacement threshold comparable to that previously
shown appropriate for youth fMRI studies (0.7 mm;
Church, Bunge, Petersen, & Schlaggar, 2017; Siegel
et al., 2014). Participant runs with fewer than 80% of vol-
umes retained after censoring (Simmonds et al., 2017)

Table 2. Correlations and Factor Loadings of Selected WM Performance Measures

Measure 1 2 3 4 5 6 PC1

1. Count-span accuracy – .13 .30 .43* .02 .36* .56***

2. In-scanner WM accuracy .13 – .54** .43* .36* .19 .71***

3. In-scanner WM 1-RT .30 .54** – .30 .37* .38* .78***

4. n-back accuracy .43* .43* .30 – .29 .29 .72***

5. n-back 1-RT .02 .36* .37* .29 – .02 .51***

6. Prescan WM capacity .36* .19 .39* .29 .02 – .56***

Six WM measures selected for latent variable (WML) analyses and their intercorrelations (see main text for selection details). PC1 = loadings of each
measure with Principal Component 1 (i.e., WML). RTs were reversed scored for ease of interpretation (1-RT). p values, uncorrected.

*p < .05

**p < .01

***p < .001.
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were dropped for that participant (three runs at the par-
ticipant level were dropped in total for the WM task; 0
runs were dropped from the IPT). General linear models
(GLMs) were used to estimate task activation and con-
nectivity. All GLMs employed controlled for 6-degrees-
of-freedom motion estimates, frame-wise displacement,
and censored frames (volume > 0.7-mm head displace-
ment). GLMs also employed AFNI’s automatic (high-pass)
temporal filtering, to limit temporal tends, including
those that may induce autocorrelations, via polynomial
detrending with the exponent determined by the integer
value of 1 + (Number of TRs/150). Four variables quanti-
fying individual differences in head motion were also used
as covariates in target analyses, which also help to control
for individual factors influencing autocorrelation; these in-
cluded average frame-wise displacement across runs (e.g.,
Satterthwaite et al., 2012), maximum frame-wise displace-
ment across runs, average number of censored frames per
run, and maximum number of censored frames per run.

Task Activations and Functional ROIs

To obtain reward- and WM-sensitive functional ROIs,
voxel time-series data were convolved with a boxcar im-
pulse response function using the GLMs described
above. For the IPT, reward and loss 28-sec blocks were
modeled as separate regressors. For the delayed-
response WM task, a task-versus-rest 18-sec boxcar re-
gressor was used in WM activation analyses to derive
ROIs active during the WM task. WM functional ROIs were
derived using activations from this single task-versus-rest

model to avoid biasing our target WM-phase-specific
connectivity analyses.

Reward-Sensitive BG ROIs

A reward node was created that was significantly respon-
sive to both reward andWM stimuli. This reward node was
determined based on contiguous IPT and WM task activa-
tions. For the IPT, we assessed which regions were signif-
icantly ( p < .0025; k ≥ 100; FWE rate [FWER]-corrected
ps < .05) more active during reward blocks relative to loss
blocks (Barch et al., 2013; Delgado et al., 2000). For the
WM task, we assessed which regions were significantly
( p < .001; k ≥ 70; FWER-corrected ps < .05) more active
during WM blocks relative to rest periods. A slightly less
stringent p value was used for the IPT to account for the
lower signal assumed by using the task-versus-task con-
trast (i.e., reward > loss) and larger extent of activation
criterion (i.e., k ≥ 100), relative to the task-versus-rest
contrast of the WM task (i.e., task > baseline; k ≥ 70).
The reward node was delineated from clusters with
≥ 100 significantly active voxels overlapping from both
tasks (Figure 3).

WM-Sensitive Frontoparietal ROIs

We selected clusters of significantly active voxels during
the delayed-response WM task, with centers of mass
located within lateral prefrontal and posterior parietal re-
gions (z ≥ 5, k ≥ 25; Figures 2 and 3A). Note that a higher
threshold was used here (see also below) compared to

Figure 2. Significant BOLD activations used to derive the reward node. Reward > loss: p= .0025, k> 99, FWER < .05. WM > rest: p= .001, k> 70,
FWER < .05. Most (81%) of overlapping voxels were within ventral BG. Three small clusters (5, 12, and 35 voxels; not visible here) also demonstrated
overlap between these two tasks.
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the reward-sensitive BG regions to ensure spatial inde-
pendence between functional ROIs.

Other WM-Sensitive ROIs

WM is a distributed process in the brain (Christophel,
Klink, Spitzer, Roelfsema, & Haynes, 2017). Moreover,
adolescent development is related to broad-spread
changes in brain function during WM and a general ten-
dency for brain activations to become more stable with
increasing age (Montez, Calabro, & Luna, 2017;
Simmonds et al., 2017). To test alternative hypotheses,
we also examined other WM-sensitive brain regions active
during the WM task. This circuit included all other, non-
frontoparietal, WM-sensitive regions (z ≥ 5, k ≥ 25;
Figures 2 and 3B). These nodes comprised what we
termed an “additional WM circuit.” This term was not
meant to minimize the importance of these regions in
WM (e.g., Christophel et al., 2017); rather, it is used to
signify that these regions are supplementary to our pri-
mary hypotheses.

There was no voxel or anatomical contiguity between
ROIs (Figure 3). For instance, one cluster of voxels (x =
−32, y = 4, z = 0; 25 voxels; left claustrum/insula/
dorsomedial putamen) was not included in these analyses
because it was anatomically contiguous with both voxels
from the IPT reward contrast and the WM task but did not
qualify for the reward node because of its small size. Thus,
this cluster was not included in subsequent analyses.

Functional Connectivity Between Functional ROIs

To estimate WM-phase-specific functional connectivity,
trial-by-trial activations during encoding, delay, and re-
trieval periods were modeled as separate regressors by
convolution with canonical, double-gamma impulse
response functions. To minimize co-linearity between

conditions in the design of our WM task, condition onsets
were spaced 4–8 sec apart such that the encoding phase
began at the beginning of the trial, the delay phase began
4 sec after the onset of the encoding phase, and the re-
trieval phase began 8 sec after the onset of the delay phase
(see Figure 1). This spacing followed guidelines (4–6 sec
when using canonical impulse response functions) from
extant event-related research using GLM-based models
to recover distinct activations or functional connectivity
patterns during different WM conditions (e.g., Rissman
et al., 2004; Zarahn, Aguirre, & D’Espositio, 1997). These
GLMs used the same nuisance regressors as the GLMs de-
scribed above. Although retrieval period regressors were
not used in subsequent analyses, these periods were mod-
eled to limit “active” hemodynamic contamination of the
modeled baseline period. To increase power, target anal-
yses collapsed across WM-demand conditions. WM-phase-
specific functional connectivity was estimated using the
beta-series method, which has been shown to produce
phase-specific connectivity changes during this task
(Rissman et al., 2004). This trial-by-trial deconvolution ap-
proach has also been successfully applied to assess posten-
coding, neural pattern stability in adult episodic memory
(Ezzyat & Davachi, 2014; Tambini & Davachi, 2013), and
this approach is recommended for fMRI pattern analyses
(Mumford, Turner, Ashby, & Poldrack, 2012). Average esti-
mates of WM-phase-specific functional connectivity were
obtained using Pearson correlations of beta series (Rissman
et al., 2004) between functional ROIs (detailed above).
Correlations between these regions were used in functional
connectivity pattern stability analyses (detailed below).

Functional Connectivity Pattern Stability

The stability (i.e., less change = greater stability) of goal-
relevant functional connectivity patterns between func-
tional ROIs was examined from when goal-relevant

Figure 3. Reward and WM
functional ROIs used in
connectivity analyses. (A)
Reward node (yellow) and
frontoparietal regions (green)
comprising the reward-
frontoparietal WM circuit. (B)
Reward node (yellow) and the
additional WM-circuit regions
(purple) comprising the
reward-additional WM circuit.
Nodes in both circuits were
derived to ensure no anatomical
or functional overlap with the
reward node. Regions displayed
on surface via box smoothing
algorithm employed in BrainNet
Viewer (Xia, Wang, & He, 2013).
See Tables 3 and 4 for
anatomical labels and Montreal
Neurological Institute coordinates.
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patterns were encoded and during the WM-delay period.
To quantify functional connectivity pattern stability in a
given circuit, the average change (Euclidean distance)
of beta-series correlation coefficients was assessed be-
tween encoding (e) and delay (d) WM phases. This ana-
lytic approach is similar to representational dissimilarity
pattern analyses (Connolly et al., 2012; Kriegeskorte,
Mur, & Bandettini, 2008). However, instead of trying to
identify unique patterns in space, the present approach
identified individual differences in neural patterns in time
(across memory phases; e.g., Tambini & Davachi, 2013).
Pattern stability estimates were Fisher (atan−1) trans-
formed to retain a normal distribution across participants
(Ezzyat & Davachi, 2014; Tambini & Davachi, 2013).
Functional connectivity pattern stability for a given region
i, in a circuit of n regions, is formalized as

PS ¼ atan−1 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ei;1 − di;1
� �2 þ… ei;n − di;n

� �2q

n−1

0
@

1
A

0
@

1
A

(1)

Higher PS indicated that the average pattern of functional
connections for a given region, within a given circuit,
changed less from when goal-relevant information was

encoded to when this information needed to be main-
tained (see Figure 4 for circuits).

Computational Lesion Approach

The computational lesion approach was adapted frompre-
vious research in complex systems science (De Asis-Cruz,
Bouyssi-Kobar, Evangelou, Vezina, & Limperopoulos,
2015; Achard, Salvador, Witcher, Suckling, & Bullmore,
2006; Albert, Jeong, & Barabási, 2000). Computational le-
sion modeling allowed us to ask: What happens to pattern
stability in a target circuit if we remove the functional con-
nectivity (i.e., lesion) between each node in this target
circuit and an external, target (i.e., lesioned) node?
Specifically, this modeling was used to test whether ado-
lescents’ communication signals (operationalized by the
strength of their functional connectivity) from reward-
sensitive BG influenced the stability of goal-relevant neu-
ral patterns within WM-sensitive frontoparietal regions
(cf. Frank & Badre, 2011; O’Reilly et al., 2010; Reynolds
& O’Reilly, 2009; Gruber et al., 2006; O’Reilly & Frank,
2006). Similar to other investigations in the adult and de-
veloping brain, computational lesions were applied to
our actual data (De Asis-Cruz et al., 2015; Achard et al.,
2006). Computational lesioning adapted Equation 1 to
quantify PS in a given frontoparietal or the additional

Figure 4. Conceptual overview of functional connectivity pattern stability estimates by circuit. Reward node (yellow), frontoparietal (FP; green), and
additional WM-circuit (purple) nodes comprising different circuits. Example of weighted matrices of correlation patterns by circuit and phase.
Emphasized portions of these matrices are input into Equation 1 to derive PS for a given node, for a given participant. Regions (top–bottom): Reward =
reward node; l VLPFC = left ventrolateral pFC; r VLPFC = right ventrolateral pFC; l DLPFC = left dorsolateral pFC; r PL = right parietal lobule; l PL =
left parietal lobule; d ACC = dorsal ACC; VC = visual cortex; l Precent = left precentral gyrus; l pThal = left posterior thalamaus; r Cerebel = right
cerebellar lobule VII; r pThal = right posterior thalamus; l Cingulate = left cingulate. See Tables 3 and 4 for anatomical labels and Montreal
Neurological Institute coordinates.
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WM circuit (C), for a given adolescent’s data. Consistent
with Equation 1, the average Euclidean distance between
encoding- and delay-period functional connections was
calculated. However, each functional connection in a given
circuit was made linearly independent from its functional
connectivity with the reward node (R; i.e., lesioned) in a
given WM phase (e or d), via Pearson partial correlations
(cf. Lansink et al., 2008). Thus, pattern stability while le-
sioning reward node functional connections in a circuit
with Q number of brain regions is formalized as

PSCjR ¼ atan−1 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1;2jR−d1;2jR
� �2 þ… eQ− 1;QjR−dQ− 1;QjR

� �2q

Q

0
@

1
A

0
@

1
A

(2)

For example, Model PSFP|R estimated the average pat-
tern stability in adolescents’ frontoparietal circuit, after
each functional connection in this circuit was made lin-
early independent from its functional connectivity with
the reward node. If, on average, frontoparietal pattern
stability estimated from Model PSFP|R was less than the
actual pattern stability (PSFP), this would suggest that
functional connectivity with the reward node significantly
increased the stability of neural patterns in adolescents’
frontoparietal regions. The same formula and interpreta-
tion may be applied to modeling lesions to reward-node
connections in the additional WM-circuit regions (Model
PSAdditional|R).

Equation 2 was also adapted to create a supplemental
model to test whether lesioning functional connections
from other WM-sensitive subcortical regions would pro-
duce similar or different pattern stability estimates in
frontoparietal regions, compared to Model PSFP|R.
Three other WM-sensitive subcortical regions were part
of the additional WM circuit during the WM task (por-
tions of left and right posterior thalamus, and right cere-
bellar lobule VII; Figures 2–3, Table 4). Model PSFP|SC
estimated the influence of the average of these three sub-
cortical functional connections on frontoparietal pattern
stability.

RESULTS

WM Performance

The six WM performance measures entered into the PCA
and their descriptive statistics, intercorrelations, and cor-
relations with PC1 are reported in Tables 1 and 2. PC1
accounted for 42% of the variance in WM measures. All
measures correlated significantly with PC1 factor scores
(rrange = .51–.72, ps < .01; Table 2). Factor scores on
PC1 were used in subsequent analyses as a latent mea-
sure of WM performance (WML). Consistent with other
developmental studies of WM, adolescents’ age showed
a positive correlation with the WM performance latent
variable (WML; p < .05; Figure 5A); thus, as age in-
creased, WM performance increased as well. Age re-
tained a significant relationship with WM performance
latent variable when controlling for sex (rXY|Z = .492,
p = .005).

IPT and WM Task Activations

Significant IPT (reward > loss) and WM task (WM > rest)
activations may be found in Figure 2. Most spatial overlap
(81%) between these two tasks occurred within two ven-
tral BG clusters including nucleus accumbens, ventral
caudate, and ventromedial putamen (Figures 2–3,
Table 3). Coordinates and anatomical labels of functional
ROIs from Figure 3 may be found in Tables 3 and 4.
Reward and frontoparietal nodes, which were used for
our primary hypothesis tests, showed a high degree of
spatial overlap with extant functional imaging studies of
reward and WM activation, offering confidence in the re-
producibility of these nodes in subsequent work (see
Supplemental Figures 1–31).

Empirical Analyses: Reward-Frontoparietal Pattern
Stability, Age, and WM Performance

We sought to test whether the stability of functional
connectivity patterns between reward and frontoparietal
WM connections (PSReward-FP) was related to adolescent

Table 3. Reward-Sensitive BG Clusters, Anatomical Labels, and Coordinates

Cluster Anatomical Labels x y z Voxel Count

Right ventral Nucleus accumbens, ventral caudate 16 17 −06 105

BG Ventromedial putamen

Left ventral Dorsolateral putamen, nucleus accumbens −22 11 −07 100

BG Ventral caudate, ventromedial putamen

Clusters were derived from overlap of significant IPT and WM task activations (see main text). These clusters together comprised the reward node.
Coordinates were in Montreal Neurological Institute space (RAI) at the cluster center of mass. All anatomical labels were within 5 mm of the cluster
center of mass. Labels were derived from Brainnetome 1.0 Atlas (Fan et al., 2016).

1516 Journal of Cognitive Neuroscience Volume 32, Number 8



development by examining its correlation with age. Age
was positively associated with pattern stability between
reward and frontoparietal WM connections (PSReward-FP;
p < .05; Figure 5B); thus, as age increased, the stability

of functional connectivity patterns between the reward
node and frontoparietal regions also increased. We also
testedwhether pattern stability between reward and fronto-
parietal WM connections was related to adolescents’

Table 4. WM Functional ROIs, Anatomical Labels, and Coordinates

Node Circuit Anatomical Labels (BAs) x y z Voxels

VC Additional Cuneus, lingual (17, 18) 00 −88 −04 9713

dACC Additional Cingulate, medial frontal, superior frontal (6) 00 12 50 728

L VLPFC Frontoparietal Inferior frontal, insula (13, 45, 47) −36 22 03 612

R VLPFC Frontoparietal Claustrum, inferior frontal, insula (13, 45, 47) 34 24 00 336

L PL Frontoparietal Inferior parietal, precuneus superior parietal (7, 19, 39) −30 −62 46 282

L Precent Additional Postcentral, precentral (2, 3, 4) −42 −24 54 265

L DLPFC Frontoparietal Inferior frontal, middle frontal precentral (6, 9) −46 04 34 216

R PL Frontoparietal Inferior parietal, precuneus superior parietal (7, 40) 34 −60 46 202

L pThal Additional Caudal hippocampus, caudal and occipital thalamus,
posterior parietal thalamus, rostral temporal thalamus

−24 −28 −04 76

R Cerebel Additional Cerebellar Lobule VIIa, VIIb, VIIa crus II 28 −68 −52 54

R pThal Additional Caudal hippocampus, lateral prefrontal thalamus,
occipital and sensory thalamus, posterior parietal thalamus

24 −28 00 46

L Cingulate Additional Anterior cingulate, cingulate gyrus (24, 32) −12 18 34 27

Nodes were derived from significant clusters of WM activation (see main text). Node abbreviation and circuit designations were listed. Coordinates
were in Montreal Neurological Institute space (RAI) at the cluster center of mass. All labels were within 5 mm of the cluster center of mass. Gyrus
labels were based on Talairach–Tournoux atlas (Talairach & Tournoux, 1988) with the nearest Brodmann’s areas (BAs; within 5 mm) in parentheses.
Thalamus labels were derived from Brainnetome 1.0 Atlas (Fan et al., 2016). Cerebellum labels were derived from Eickhoff–Zilles cytoarchitectonic
atlas (Eickhoff et al., 2004, 2007).

Figure 5. (A) Association between age (in years) and WM latent factor (WML; greater WML = greater WM ability). (B) Association between age and
functional connectivity pattern stability (greater PS = more stability) in reward-frontoparietal circuit (PSReward-FP). (C) Association between WML and
PSReward-FP. These relationships between age and PSReward-FP (B) and between WML and PSReward-FP (C) retained statistical significance despite
controlling for (1) individual differences in the four measures of participant motion, (2) sex, or (3) the use of psychostimulant medication ( ps < .05).
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WMability by examining its correlationwith ourWMperfor-
mance latent variable (WML). The WM performance latent
variable was positively associated with adolescents’ stabil-
ity of functional connectivity patterns between reward
and frontal parietal regions ( p < .05; Figure 5C); thus,
as adolescents’ WM ability increased, the stability of func-
tional connectivity patterns between the reward node
and frontoparietal regions also increased.

Relationships between age and the stability of func-
tional connectivity patterns between reward and fronto-
parietal WM connections (PSReward-FP) retained statistical
significance despite controlling for (1) individual differ-
ences in the four measures of participant motion, (2)
sex, or (3) the use of psychostimulant medication ( ps ≤
.05; see Supplemental Table 1). Similarly, relationships
between the WM performance latent variable (WML) and
the stability of functional connectivity patterns between
reward and frontoparietal WM connections (PSReward-FP)
retained statistical significance despite controlling for
(1) individual differences in the four measures of partici-
pant motion, (2) sex, or (3) the use of psychostimulant
medication ( ps ≤ .05; see Supplemental Table 1).

Given the importance of frontoparietal regions for
WM, it is possible that examining pattern stability be-
tween reward-sensitive BG and these regions might not
yield further understanding to WM development, when
considering pattern stability in frontoparietal regions
more generally. We tested whether the relationship be-
tween the stability of functional connectivity patterns be-
tween reward and frontoparietal WM connections
(PSReward-FP) and age remained significant after removing
the variance accounted for by pattern stability within
frontoparietal regions more generally (PSFP). We addi-
tionally tested whether the relationship between the sta-
bility of functional connectivity patterns between reward
and frontoparietal WM connections (PSReward-FP) and the
WM performance variable (WML) remained significant af-
ter removing the variance accounted for by PSFP. Both
correlations were attenuated when controlling for the
general stability of frontoparietal connectivity patterns
(PSFP). However, the stability of functional connectivity
patterns between the reward node and frontoparietal re-
gions (PSReward-FP) still retained a significant relationship
with age (rXY|Z = .368, p = .035) and WML (rXY|Z = .418,
p = .019), despite controlling for PSFP.

We also tested the alternative hypothesis that pattern
stability between the reward node and other WM-
sensitive regions (i.e., PSReward-Additional) could be related
to adolescent age or WM ability. We failed to find signif-
icant relationships between age and pattern stability be-
tween the reward node and other WM-sensitive regions
(PSReward-Additional; r = .084, p = .636). Similarly, we failed
to find significant relationships between the WM latent
variable (WML) and pattern stability between the reward
node and other WM-sensitive regions (PSReward-Additional;
r = .293, p= .103). These findings suggesting the stabil-
ity of goal-relevant patterns between reward-sensitive

BG and WM-sensitive frontoparietal regions may be
uniquely related to adolescents’ age and WM ability.

Computational Analyses: Lesion Models

We hypothesized that, if adolescents’ communication be-
tween reward-sensitive BG and WM-sensitive frontoparie-
tal regions increased the stability of goal-relevant neural
patterns in these frontoparietal regions, then computa-
tionally lesioning functional connections with reward-
sensitive BG would significantly decrease pattern stability
in frontoparietal regions. This hypothesis was supported.
Lesioning reward-node functional connections to WM-
sensitive frontoparietal regions (Model PSFP|R) signifi-
cantly decreased pattern stability in frontoparietal regions,
compared to no lesioning ( p< .001; Figure 6A). This result
retained significance despite removing variance accounted
for by (1) individual differences in the four measures of
participant motion, (2) sex, or (3) the use of psychostimu-
lant medication ( ps < .05; see Supplemental Table 2).
The effects of lesioning reward-node functional con-

nections on frontoparietal pattern stability were dissociated
from the general effects of lesioning functional connec-
tions from WM-sensitive subcortical regions. Here, we
tested whether pattern stability estimates in frontoparie-
tal regions when lesioning the reward node connections
(Model PSFP|R) were significantly less than pattern stabil-
ity estimates in frontoparietal regions when lesioning
connections from other active, subcortical structures
(Model PSFP|SC). This dissociation was supported
(Model PSFP|R < Model PSFP|SC, p < .001; Figure 6B);
thus, lesioning the reward node connections resulted in
significantly less pattern stability in frontoparietal regions
relative to lesioning connections from other active sub-
cortical structures. This result retained significance de-
spite removing variance accounted for by (1) individual
differences in the four measures of participant motion,
(2) sex, or (3) the use of psychostimulant medication
( ps < .05; Supplemental Table 3).
The effect of lesioning reward-node connections on

pattern stability in WM-sensitive frontoparietal regions
was also dissociated from a reward-node lesion model
to additional WM-circuit regions. Here, we tested the hy-
pothesis that lesioning reward-node connections would
produce significant decreases in frontoparietal pattern
stability relative to the effect of lesioning reward-node
connections on the pattern stability between the addi-
tional WM-circuit regions. This dissociation was supported
( p < .001; Figure 6C). Specifically, a repeated-measures
ANOVA demonstrated a significant Lesion � Circuit inter-
action effect on pattern stability; thus, frontoparietal re-
gions showed greater decreases in pattern stability given
lesioned reward-node connections, relative to the addi-
tional WM-circuit regions given lesions to these same
reward-node connections. The Lesion � Circuit interac-
tion retained its significance despite removing variance
accounted for by (1) individual differences in the four
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measures of participant motion, (2) sex, or (3) the use of
psychostimulant medication ( ps < .05; Supplemental
Table 4). The repeated-measures ANOVA also found a
main effect of Lesion (partial eta-squared [ηp

2] = .461,
p < .001), with reward lesion models showing an overall
decrease in pattern stability, compared to pattern stability
in these circuits without computational lesioning. There
was also a main effect of Circuit (ηp

2 = .355, p= .001), with
WM-sensitive frontoparietal regions showing elevated pat-
tern stability relative to the additional WM-circuit regions,
which was expected given the proposed role of neural
pattern stability in these regions during WM (Frank &
Badre, 2011; O’Reilly et al., 2010; Reynolds & O’Reilly,
2009; Gruber et al., 2006; O’Reilly & Frank, 2006).

DISCUSSION

This study sought evidence for reward-driven pattern sta-
bility as one possible mechanism explaining the com-
bined significance of BG and frontoparietal regions in
adolescent WM development. Empirical analyses revealed
that the stability of goal-relevant functional connectivity
patterns between reward-sensitive BG and WM-sensitive
frontoparietal regions was positively associated with ado-
lescent age and WM ability. These relationships remained
significant despite covarying for pattern stability within
WM-sensitive frontoparietal regions alone. Relationships

failed to reach significance between reward-sensitive BG
and the additional WM-circuit regions. Together, empiri-
cal results suggest that the extent to which goal-relevant
communication patterns within reward-frontoparietal cir-
cuitry are maintained (i.e., stability) uniquely increases
with adolescent development and WM ability.

Computational lesion modeling revealed that reward-
sensitive BG connections increased the stability of goal-
relevant connectivity patterns in frontoparietal regions.
Two dissociations were also demonstrated wherein (1)
lesions to other active subcortical regions’ connections
demonstrated significantly less influence on WM-sensitive
frontoparietal goal-relevant pattern stability than reward-
sensitive BG lesions and (2) reward-sensitive BG lesions
showed significantly less influence on goal-relevant pat-
tern stability in active, nonfrontoparietal regions than
these lesions did on frontoparietal regions. These analy-
ses cannot inform us in the same manner as actual lesion
studies can on the potential causal influence that reward-
sensitive BG has on adolescent WM performance.
However, consistent with adult models of WM, our com-
putational lesion findings suggest that communication
between reward-sensitive BG and frontoparietal regions
uniquely increases the stability of goal-relevant neural
patterns maintained in adolescents’ WM.

The stability of neural patterns across delay periods
or task epochs is associated with greater memory

Figure 6. Lesion model effects on functional connectivity pattern stability (PS ). (A) Average pattern stability in frontoparietal (FP) regions before
(black) and after lesioning connections with the reward node (light gray). (B) Average pattern stability in frontoparietal regions after lesioning
connections from the three subcortical WM regions (dark gray) and after lesioning reward node connections (light gray). (C) Effects of lesioning
reward node connections on pattern stability in frontoparietal and the additional WM-circuit regions. See main text for other lesion and circuit effects.
Error bars reflect 1 SEM. ηp

2 = partial eta-squared effect-size estimate from repeated-measures ANOVA. These tests all retained statistical significance
despite controlling for (1) individual differences in the four measures of participant motion, (2) sex, or (3) the use of psychostimulant medication
( ps < .05).
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performance in adults (Ezzyat & Davachi, 2014; Tambini
& Davachi, 2013; see also Sprague, Ester, & Serences,
2016; Stokes, 2016). For instance, in one adult study,
the persistence of functional connectivity patterns in hip-
pocampal voxels across encoding and postencoding rest
periods (i.e., pattern stability) significantly predicted later
memory performance for encoded memoranda (Tambini
& Davachi, 2013). In adult neurobiological models of WM,
reward-prediction-error signals to and from reward-
sensitive BG enhance the stability of encoded neural pat-
terns maintained in WM. However, reward-prediction-
error signals must travel throughout a rich circuitry of
connections between and within BG as well as prefrontal
and parietal cortices. Continued development of these
and other circuits until young adulthood (Heller et al.,
2016; Simmonds et al., 2014; Lebel & Beaulieu, 2011) and
development of this circuit’s individual nodes (Davidow
et al., 2019; Schrueuders et al., 2018; Wierenga et al.,
2018; Satterthwaite et al., 2012, 2013; Somerville et al.,
2011) suggest that this circuitry may not be fully capable
of stabilizing encoded representations during WM devel-
opment. Lesser ability to stabilize representations in WM
may limit this circuitry’s ability to enhance WM per-
formanceduringdevelopment. In support of this hypothesis,
our results demonstrated that, as adolescent age increased,
encoded neural patterns within reward-frontoparietal cir-
cuitry also became more stable. Additionally, by
demonstrat ing a posit ive relat ionship with WM
performance, our findings suggest that stability within
this circuitry may act as one neural mechanism to
enhance WM ability during adolescence.

Despite continuing development of cortico-BG circuitry,
lesion analyses demonstrated that adolescents’ communi-
cation signals from reward-sensitive BG are, on average,
able to influence the stability of goal-relevant neural pat-
terns in frontoparietal regions. In adult models of WM,
reward-prediction-error signals are (directly or indirectly)
communicated from reward-sensitive BG to pFC, signaling
thalamocortical circuits to “lock the gate” on encoding
new information and maintain encoded goal-relevant neu-
ral patterns (Frank & Badre, 2011; Gruber et al., 2006;
O’Reilly & Frank, 2006). These signals increase the stability
of goal-relevant neural patterns within frontoparietal re-
gions, wherein high-level representations of this informa-
tion are presumed to be maintained (Christophel et al.,
2017; D’Esposito & Postle, 2015). Our lesion analyses sug-
gested that communication between reward-sensitive BG
and frontoparietal regions plays a similar role in the main-
tenance of goal-relevant neural patterns in adolescents.
However, because the beneficial effects of reward signal-
ing on cognition are not fully realized until young adult-
hood (Dumotheil et al., 2011; see also Davidow et al.,
2018; Larsen & Luna, 2018), it may be that the extent to
which this signaling can be used to stabilize goal-relevant
information in frontoparietal regions parallels broader
trends in WM and continues development into one’s early
20s (e.g., Brockmole & Logie, 2013).

Considerations

Several caveats should be considered in the context of
the present work. First, our interpretations and hypothe-
ses are based on neurobiological models of WM, which
emphasize the role of BG in reward-prediction-error sig-
naling. More general reward-related processing occurs in
many brain regions (e.g., OFC), and future work examin-
ing these regions may provide further understanding of
reward-related processing in the development of WM
(see Davidow et al., 2018; Kahnt, 2017). In addition,
the broader function of frontoparietal regions in goal-
directed behaviors (Cole, Bassett, Power, Braver, &
Petersen, 2014; Miller & Buschman, 2013; Cole &
Schneider, 2007; Miller & Cohen, 2001) alludes to the no-
tion that interactions between frontoparietal and reward-
related circuitries may play a more expansive role in the
development of cognitive domains beyond WM
(Davidow et al., 2018; Larsen & Luna, 2018; Luna et al.,
2015).
Second, our findings do not supplant the importance

of other BG regions’ contributions to WM or WM devel-
opment (e.g., Nemmi et al., 2018; McNab & Klingberg,
2008). In neurobiological models of WM, dorsal and ven-
tral BG have different but complementary functions in
enhancing WM maintenance (Frank & Badre, 2011;
O’Reilly et al., 2010; Gruber et al., 2006; O’Reilly &
Frank, 2006). Although their primary functions are differ-
ent, communication between these regions is thought to
be essential for stabilizing the maintenance of goal-
relevant representations in WM (O’Reilly, 2006; O’Reilly
& Frank, 2006). For instance, in these models, ventral
BG learn which information is goal relevant through in-
teractions with pFC (e.g., error monitoring; Petersen &
Dubis, 2012) and other dopaminergic hubs (O’Reilly,
2006; O’Reilly & Frank, 2006). After this learning,
reward-prediction-error signals are communicated from
ventral BG to dorsal BG, which cue frontoparietal regions
to maintain goal-relevant neural patterns. Thus, reward
signals from ventral BG are thought to be necessary,
but not sufficient, for enhancing the stability of goal-
relevant information in WM.
The present results may also be considered in the con-

text of individual variation in development. WM and its
neural substrate are sensitive to physiological and social
factors during development (e.g., Schulte et al., 2019;
Farooqi et al., 2018; Finn et al., 2016; see Larsen &
Luna, 2018). This study assessed a young adolescent sam-
ple (12.16–14.72 years old) and found that nearly one
quarter of the variance in these adolescents’ WM abilities
could be accounted for by age. Although we present a
relatively narrow age range compared to other studies,
the observed large-effect-size relationship between age
and WM implies a high degree of heterogeneity in WM-
related developmental processes in this age group.
During adolescence, there are considerable individual
differences in WM developmental trajectories (Nemmi
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et al., 2018; Ullman et al., 2014). There is also evidence
for a relatively rapid growth of performance on various
measures of WM during early to mid-adolescence, around
ages 11–15 years (Montez et al., 2017; Ullman et al., 2014;
Brockmole & Logie, 2013; Gathercole et al., 2004;
Luciana, Conklin, Hooper, & Yarger, 2005, 2005). Future
research should seek to isolate the roles of diverse devel-
opmental factors in influencing relationships between age
and WM ability, as well as WM ability and goal-relevant pat-
tern stability, during these early adolescent years. For in-
stance, social factors, such as socioeconomic status, have
been demonstrated in early adolescence (i.e., middle
school students) to have significant relationships with
WM performance and frontoparietal brain activations dur-
ing WM (Finn et al., 2016). Physiological developmental
schedules and pubertal onset also vary widely (∼2+ years;
Patten & Viner, 2007), making an early adolescent age
range an ideal target for research to explore such factors
as mediators in the relationship between WM perfor-
mance and neural development.

Conclusion

WM is evident during infancy (O’Gilmore & Johnson,
1995). During adolescence, developmental processes
shape and refine this critical cognitive ability (Simmonds
et al., 2017; Ullman et al., 2014; Brockmole & Logie, 2013;
Satterthwaite et al., 2012, 2013; Crone et al., 2006; Cowan
et al., 2005; Gathercole et al., 2004; Barrouillet & Camos,
2001; Towse et al., 1998; see also Davidow et al., 2018;
Crone & Steinbeis, 2017; Luna et al., 2015). Because of
the relevance of adolescent WM to important outcomes
such as scholastic achievement (Finn et al., 2016;
Cowan et al., 2005; Gathercole et al., 2004; Gathercole
& Pickering, 2000), mental illness (Diwadkar et al., 2011;
Ross, Wagner, Heinlein, & Zerbe, 2007; Smith et al., 2006;
Martinussen, Hayden, Gohh-Johnson, & Tannock, 2005),
and more general adaptive behaviors (Walshe et al.,
2019), understanding the combined roles of reward and
cognitive-control circuitry on WM may prove important
for gaining insights into broader typical and atypical neu-
rocognitive development. Future research employing lon-
gitudinal designs and contrasting adolescent pattern
stability phenomenon with adult samples are needed to
understand the exact nature of how this phenomenon
might change through development. However, this study
provides the first evidence for reward-driven pattern sta-
bility as a functional mechanism to explain how commu-
nication between BG and frontoparietal regions may
influence WM development.
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