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a b s t r a c t

Recent investigations into the education production function have moved beyond traditional

teacher inputs, such as education, certification, and salary, focusing instead on observational

measures of teaching practice. However, challenges to identification mean that this work has

yet to coalesce around specific instructional dimensions that increase student achievement. I

build on this discussion by exploiting within-school, between-grade, and cross-cohort varia-

tion in scores from two observation instruments; further, I condition on a uniquely rich set of

teacher characteristics, practices, and skills. Findings indicate that inquiry-oriented instruc-

tion positively predicts student achievement. Content errors and imprecisions are negatively

related, though these estimates are sensitive to the set of covariates included in the model.

Two other dimensions of instruction, classroom emotional support and classroom organiza-

tion, are not related to this outcome. Findings can inform recruitment and development efforts

aimed at improving the quality of the teacher workforce.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, research has confirmed that teach-
ers have substantial impacts on their students’ academic
and life-long success (e.g., Nye, Konstantopoulos, & Hedges,
2004; Chetty, Friedman, & Rockoff, 2014). Despite concerted
efforts to identify characteristics such as experience, educa-
tion, and certification that might be correlated with effec-
tiveness (for a review, see Wayne & Youngs, 2003), how-
ever, the nature of effective teaching still largely remains a
black box. Given that the effect of teachers on achievement
must occur at least in part through instruction, it is crit-
ical that researchers identify the types of classroom prac-
tices that matter most to student outcomes. This is especially
true as schools and districts work to meet the more rigor-
ous goals for student achievement set by the Common Core
State Standards (Porter, McMaken, Hwang, & Yang, 2011),
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particularly in mathematics (Duncan, 2010; Johnson, 2012;
U.S. Department of Education, 2010).

Our limited progress toward understanding the impact of
teaching practice on student outcomes stems from two main
research challenges. The first barrier is developing appro-
priate tools to measure the quality of teachers’ instruction.
Much of the work in this area tends to examine instruction
either in laboratory settings or in classrooms over short pe-
riods of time (e.g., Anderson, Everston, & Brophy, 1979; Star
& Rittle-Johnson, 2009), neither of which is likely to capture
the most important kinds of variation in teachers’ practices
that occur over the course of a school year. The second is a
persistent issue in economics of education research of de-
signing studies that support causal inferences (Murnane &
Willett, 2011). Non-random sorting of students to teachers
(Clotfelter, Ladd, & Vigdor, 2006; Rothstein, 2010) and omit-
ted measures of teachers’ skills and practices limit the suc-
cess of prior research.

I address these challenges through use of a unique dataset
on fourth- and fifth-grade teachers and their students from
three anonymous school districts on the East Coast of the
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United States. Over the course of two school years, the project
captured observed measures of teachers’ classroom prac-
tices on the Mathematical Quality of Instruction (MQI) and
Classroom Assessment Scoring System (CLASS) instruments,
focusing on mathematics-specific and general teaching prac-
tices, respectively. The project also collected data on a range
of other teacher characteristics, as well as student outcomes
on a low-stakes achievement test that was common across
participants.

My identification strategy has two key features that dis-
tinguish it from prior work on this topic. First, to account
for sorting of students to schools and teachers, I exploit vari-
ation in observation scores within schools, across adjacent
grades and years. Specifically, I specify models that include
school fixed effects and instructional quality scores averaged
to the school-grade-year level. This approach assumes that
student and teacher assignments are random within schools
and across grades or years, which I explore in detail be-
low. Second, to isolate the independent contribution of in-
structional practices to student achievement, I condition on
a uniquely rich set of teacher characteristics, skills, and prac-
tices. I expect that there likely are additional factors that are
difficult to observe and, thus, are excluded from my data.
Therefore, to explore the possible degree of bias in my es-
timates, I test the sensitivity of results to models that in-
clude different sets of covariates. Further, I interpret findings
in light of limitations associated with this approach.

Results point to a positive relationship between am-
bitious or inquiry-oriented mathematics instruction and
performance on a low-stakes test of students’ math knowl-
edge of roughly 0.10 standard deviations. I also find sug-
gestive evidence for a negative relationship between teach-
ers’ mathematical errors and student achievement, though
estimates are sensitive to the specific set of teacher char-
acteristics included in the model. I find no relationships
between two other dimensions of teaching practice – class-
room emotional support and classroom organization – and
student achievement. Teachers included in this study have
value-added scores calculated from state assessment data
similar to those of other fourth- and fifth-grade teachers in
their respective districts, leading me to conclude that find-
ings likely generalize to these populations beyond my iden-
tification sample. I argue that results can inform recruitment
and development efforts aimed at improving the quality of
the teacher workforce.

The remainder of this paper is organized as follows. In the
second section, I discuss previous research on the relation-
ship between observational measures of teacher quality and
student achievement. In the third section, I describe the re-
search design, including the sample and data. In the fourth
section, I present my identification strategy and tests of as-
sumptions. In the fifth section, I provide main results and
threats to internal and external validity. I conclude by dis-
cussing the implications of my findings for ongoing research
and policy on teacher and teaching quality.

2. Background and context

Although improving the quality of the teacher workforce
is seen as an economic imperative (Hanushek, 2009), long-
standing traditions that reward education and training or of-

fer financial incentives based on student achievement have
been met with limited success (Boyd, Grossman, Lankford,
Loeb, & Wyckoff, 2006; Fryer, 2013; Harris & Sass, 2011;
Springer et al., 2010). One reason for this posed by Murnane
and Cohen (1986) almost three decades ago is the “nature of
teachers’ work” (p. 3). They argued that the “imprecise na-
ture of the activity” makes it difficult to describe why some
teachers are good and what other teachers can do to improve
(p. 7).

Recent investigations have sought to test this theory by
comparing subjective and objective (i.e., value-added) mea-
sures of teacher performance. In one such study, Jacob and
Lefgren (2008) found that principals were able to distinguish
between teachers in the tails of the achievement distribution
but not in the middle. Correlations between principal ratings
of teacher effectiveness and value added were weak to mod-
erate: 0.25 and 0.18 in math and reading, respectively (0.32
and 0.29 when adjusted for measurement error). Further,
while subjective ratings were a statistically significant pre-
dictor of future student achievement, they performed worse
than objective measures. Including both in the same regres-
sion model, estimates for principal ratings were 0.08 stan-
dard deviations (sd) in math and 0.05 sd in reading; com-
paratively, estimates for value-added scores were 0.18 sd in
math and 0.10 sd in reading. This evidence led the authors to
conclude that “good teaching is, at least to some extent, ob-
servable by those close to the education process even though
it may not be easily captured in those variables commonly
available to the econometrician” (p. 103).

Two other studies found similar results. Using data from
New York City, Rockoff, et al. (2012) estimated correlations of
roughly 0.21 between principal evaluations of teacher effec-
tiveness and value-added scores averaged across math and
reading. These relationships corresponded to effect sizes of
0.07 sd in math and 0.08 sd in reading when predicting future
student achievement. Extending this work to mentor eval-
uations of teacher effectiveness, Rockoff and Speroni (2010)
found smaller relationships to future student achievement in
math between 0.02 sd and 0.05 sd. Together, these studies
suggest that principals and other outside observers under-
stand some but not all of the production function that con-
verts classroom teaching and professional expertise into stu-
dent outcomes.

In more recent years, there has been a growing in-
terest amongst educators and economists alike in explor-
ing teaching practice more directly. This now is possible
through the use of observation instruments that quantita-
tively capture the nature and quality of teachers’ instruc-
tion. In one of the first econometric analyses of this kind,
Kane, Taylor, Tyler, and Wooten (2011) examined teaching
quality scores captured on the Framework for Teaching in-
strument as a predictor of math and reading test scores.
Data came from Cincinnati and widespread use of this in-
strument in a peer evaluation system. Relationships to stu-
dent achievement of 0.11 sd in math and 0.14 sd in reading
provided suggestive evidence of the importance of general
classroom practices captured on this instrument (e.g., class-
room climate, organization, routines) in explaining teacher
productivity.

At the same time, this work highlighted a central chal-
lenge associated with looking at relationships between
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scores from observation instruments and student test scores.
Non-random sorting of students to teachers and non-random
variation in classroom practices across teachers means that
there likely are unobserved characteristics related both to
instructional quality and student achievement. As one way
to address this concern, the authors’ preferred model in-
cluded school fixed effects to account for factors at the school
level, apart from instructional quality, that could lead to dif-
ferences in achievement gains. In addition, they relied on
out-of-year observation scores that, by design, could not be
correlated with the error term predicting current student
achievement. This approach is similar to those taken by Jacob
and Lefgren (2008), Rockoff, et al. (2012), and Rockoff and
Speroni (2010), who used principal/mentor ratings of teacher
effectiveness to predict future student achievement. Finally,
as a robustness test, the authors replaced school fixed ef-
fects with teacher fixed effects but noted that these esti-
mates were much noisier because of the small sample of
teachers.

The largest and most ambitious study to date to conduct
these sorts of analyses is the Measures of Effective Teach-
ing (MET) project, which collected data from teachers across
six urban school districts on multiple observation instru-
ments. By randomly assigning teachers to class rosters within
schools and using out-of-year observation scores, Kane, Mc-
Caffrey, Miller, and Staiger (2013) were able to limit some of
the sources of bias described above. In math, relationships
between scores from the Framework for Teaching and prior
student achievement fell between 0.09 sd and 0.11 sd. In
the non-random assignment portion of the study, Kane and
Staiger (2012) found correlations between scores from other
observation instruments and prior-year achievement gains
in math from 0.09 (for the Mathematical Quality of Instruc-
tion) to 0.27 (for the UTeach Teacher Observation Protocol).
The authors did not report these as effect size estimates. As
a point of comparison, the correlation for the Framework for
Teaching and prior-year gains was 0.13.

Notably, these relationships between observation scores
and student achievement from both the Cincinnati and MET
studies are equal to or larger in magnitude than those that fo-
cus on principal or mentor ratings of teacher quality. This is
somewhat surprising given that principal ratings of teacher
effectiveness – often worded specifically as teachers’ ability
to raise student achievement – and actual student achieve-
ment are meant to measure the same underlying construct.
Comparatively, dimensions of teaching quality included on
these instruments are thought to be important contributors
to student outcomes but are not meant to capture every
aspect of the classroom environment that influence learn-
ing (Pianta & Hamre, 2009). Therefore, using findings from
Jacob and Lefgren (2008), Rockoff et al. (2012), and Rockoff
and Speroni (2010) as a benchmark, estimates describing
the relationship between observed classroom practices and
student achievement are, at a minimum, substantively mean-
ingful; at a maximum, they may be viewed as large. Follow-
ing Murnane and Cohen’s intuition, then, continued explo-
ration into the “nature of teachers’ work” (1986, p. 3), the
practices that comprise high-quality teaching, and their role
in the education production function will be a central com-
ponent of efforts aimed at raising teacher quality and student
achievement.

At the same time that work by Kane et al.
(2011,2012,2013) has greatly expanded conversation in
the economics of education literature to include teaching
quality when considering teacher quality, this work has
yet to coalesce around specific instructional dimensions
that increase student outcomes. Random assignment of
teachers to students – and other econometric methods
such as use of school fixed effects, teacher fixed effects, and
out-of-year observation ratings – likely provide internally
valid estimates of the effect of having a teacher who pro-
vides high-quality instruction on student outcomes. This
approach is useful when validating different measures of
teacher quality, as was the stated goal of many of the studies
described above including MET. However, these approaches
are insufficient to produce internally valid estimates of the
effect of high-quality instruction itself on student outcomes.
This is because teachers whose measured instructional
practices are high quality might have a true, positive effect
on student achievement even though other practices and
skills – e.g., spending more time with students, knowledge of
students – are responsible for the higher achievement. Kane
et al. (2011) fit models with teacher fixed effects in order to
“control for all time-invariant teacher characteristics that
might be correlated with both student achievement growth
and observed classroom practices” (p. 549). However, it is
likely that there are other time-variant skills related both to
instructional quality and student achievement.

I address this challenge to identification in two ways.
First, my analyses explore an additional approach to account
for the non-random sorting of students to teachers. Sec-
ond, I attempt to isolate the unique contribution of specific
teaching dimensions to student outcomes by conditioning
on a broad set of teacher characteristics, practices, and skills.
Specifically, I include observation scores captured on two in-
struments (both content-specific and general dimensions of
instruction), background characteristics (education, certifi-
cation, and teaching experience), knowledge (mathematical
content knowledge and knowledge of student performance),
and non-instructional classroom behaviors (preparation for
class and formative assessment) that are thought to relate
both to instructional quality and student achievement. Com-
paratively, in their preferred model, Kane et al. (2011) in-
cluded scores from one observation instrument, controlling
for teaching experience. While I am not able to capture ev-
ery possible characteristic, I argue that these analyses are an
important advance beyond what currently exists in the field.

3. Sample and data

3.1. Sample

Data come from the National Center for Teacher
Effectiveness (NCTE), which focused on collection of instruc-
tional quality scores and other teacher characteristics in
three anonymous districts (henceforth Districts 1 through
3).1 Districts 1 and 2 are located in the same state. Data was

1 This project also includes a fourth district that I exclude here due to data

and sample limitations. In the first year of the study, students did not take

the baseline achievement test. In the second year, there were only three

schools in which all teachers in the relevant grades participated in data
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Table 1

Sample descriptive statistics.

All districts District 1 District 2 District 3

Students

Male (%) 49.7 48.8 51.1 47.6

African American (%) 53.1 42.8 51.0 67.2

Asian (%) 4.2 7.2 3.7 2.4

Hispanic (%) 17.2 37.7 12.4 8.8

White (%) 21.7 6.6 29.0 19.8

FRPL (%) 71.0 84.1 71.3 58.3

SPED (%) 10.6 14.5 10.2 7.9

LEP (%) 16.4 23.6 17.8 6.6

Students 3203 724 1692 787

Teachers

Bachelor’s degree in education (%) 45.4 33.3 57.5 42.1

Math coursework (Likert Scale from 1 to 4) 2.3 2.4 2.4 2.2

Master’s degree (%) 75.0 83.3 77.5 65.8

Traditional certification (%) 70.3 74.2 92.5 45.0

Experience (In Years) 9.0 8.9 9.1 9.0

Mathematical content knowledge (Standardized) −0.07 0.15 0.00 −0.35

Knowledge of student performance (Standardized) 0.05 0.32 0.16 −0.28

Preparation for class (Likert Scale from 1 to 5) 3.4 3.4 3.3 3.4

Formative assessment (Likert Scale from 1 to 5) 3.6 3.6 3.6 3.6

Teachers 111 31 40 40

collected from participating fourth- and fifth-grade math
teachers in the 2010–2011 and 2011–2012 school years. Due
to the nature of the study and the requirement for teach-
ers to be videotaped over the course of a school year, par-
ticipants consist of a non-random sample of schools and
teachers who agreed to participate. During recruitment,
study information was presented to schools based on district
referrals and size; the study required a minimum of two
teachers at each of the sampled grades. Of eligible teachers,
143 (roughly 55%) agreed to participate. My identification
strategy focuses on school-grade-years in which I have the
full sample of teachers who work in non-specialized class-
rooms (i.e., not self-contained special education or limited
English proficient classes) in that school-grade-year. I fur-
ther restrict the sample to schools that have at least two
complete grade-year cells. This includes 111 teachers in 26
schools and 76 school-grade-years; 45 of these teachers, 17
of these schools, and 27 of these school-grade-years are in
the sample for both school years.

In Table 1, I present descriptive statistics on the students
and teachers in this sample. Students in District 1 are pre-
dominantly African American or Hispanic, with over 80% eli-
gible for free- or reduced-price lunch (FRPL), 15% designated
as in need of special education (SPED) services, and roughly
24% designated as limited English proficient (LEP). In District
2, there is a greater percentage of white students (29%) and
fewer FRPL (71%), SPED (10%), and LEP students (18%). In Dis-
trict 3, there is a greater percentage of African-American stu-
dents (67%) and fewer FRPL (58%), SPED (8%), and LEP stu-
dents (7%). Across all districts, teachers have roughly nine
years of experience. Teachers in Districts 1 and 2 were cer-
tified predominantly through traditional programs (74% and
93%, respectively), while more teachers in District 3 entered

collection, which is an important requirement of my identification strategy.

At the same time, when I include these few observations in my analyses,

patterns of results are the same.

the profession through alternative programs or were not cer-
tified at all (55%). Relative to all study participants, teachers
in Districts 1 through 3 have above average, average, and be-
low average mathematical content knowledge, respectively.

3.2. Main predictor and outcome measures

3.2.1. Video-recorded lesson of instruction
Mathematics lessons were captured over a two-year pe-

riod, with a maximum of three lessons per teacher per year.
Capture occurred with a three-camera, unmanned unit and
lasted between 45 and 80 min. Teachers were allowed to
choose the dates for capture in advance, and were directed
to select typical lessons and exclude days on which students
were taking a test. Although it is possible that these lessons
are unique from teachers’ general instruction, teachers did
not have any incentive to select lessons strategically as no
rewards or sanctions were involved with data collection. In
addition, analyses from the MET project indicate that teach-
ers are ranked almost identically when they choose lessons
themselves compared to when lessons are chosen for them
(Ho & Kane, 2013).

Trained raters scored these lessons on two established
observational instruments: the Mathematical Quality of
Instruction (MQI), focused on mathematics-specific prac-
tices, and the Classroom Assessment Scoring System (CLASS),
focused on general teaching practices. For the MQI, two cer-
tified and trained raters watched each lesson and scored
teachers’ instruction on 13 items for each seven-and-a-half
minute segment on a scale from Low (1) to High (3) (see Table
2 for a full list of items). Lessons have different numbers
of segments, depending on their length. Analyses of these
data (Blazar, Braslow, Charalambous, & Hill, 2015) show that
items cluster into two main factors: Ambitious Mathematics
Instruction, which corresponds to many elements contained
within the mathematics reforms of the 1990s (National
Council of Teachers of Mathematics, 1989,1991,2000)
and the Common Core State Standards for Mathematics
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Table 2

Univariate and bivariate descriptive statistics of instructional quality dimensions.

Univariate statistics Pairwise correlations

Teacher level School-grade-year

level

Adjusted

intraclass

correlation

Ambitious

mathemat-

ics

instruction

Mathematical

errors and

imprecisions

Classroom

emotional

support

Classroom

organization

Mean SD Mean SD

Ambitious Mathematics Instruction 1.26 0.12 1.27 0.10 0.69 1

Linking and connections

Explanations

Multiple methods

Generalizations

Math language

Remediation of student difficulty

Use of student productions

Student explanations

Student mathematical questioning

and reasoning

Enacted task cognitive activation

Mathematical Errors and Imprecisions 1.12 0.12 1.12 0.08 0.52 −0.33∗∗∗ 1

Major mathematical errors

Language imprecisions

Lack of clarity

Classroom Emotional Support 4.26 0.55 4.24 0.34 0.55 0.34∗∗∗ −0.01 1

Positive climate

Teacher sensitivity

Respect for student perspectives

Classroom Organization 6.32 0.44 6.33 0.31 0.65 0.19∗∗∗ 0.05 0.44∗∗∗ 1

Negative climate

Behavior management

Productivity

Notes: ∼p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. Statistics generated from all available data. MQI items (from Ambitious Mathematics Instruction and Mathematical

Errors and Imprecisions) on a scale from 1 to 3. CLASS items (from Classroom Emotional Support and Classroom Organization) on a scale from 1 to 7.

(National Governors Association for Best Practices, 2010);
and Mathematical Errors and Imprecisions, which captures
any mathematical errors the teacher introduces into the
lesson. For Ambitious Mathematics Instruction, higher scores
indicate better performance. For Mathematical Errors and
Imprecisions, higher scores indicate that teachers make more
errors in their instruction and, therefore, worse perfor-
mance. I estimate reliability for these metrics by calculating
the amount of variance in teacher scores that is attributable
to the teacher (i.e., the intraclass correlation), adjusted for
the modal number of lessons. These estimates are 0.69 and
0.52 for Ambitious Mathematics Instruction and Mathematical
Errors and Imprecisions, respectively. Though this latter
estimate is lower than conventionally acceptable levels (0.7),
it is consistent with those generated from similar studies
(Bell, et al., 2012; Kane & Staiger, 2012).2

2 Reliability estimates for the MQI from the MET study were lower. One

reason for this may be that MET used the MQI Lite and not the full MQI in-

strument used in this study. The MQI Lite has raters provide only overarch-

ing dimension scores, while the full instrument asks raters to score teachers

on up to five items before assessing an overall score. Another reason likely

is related to differences in scoring designs. MET had raters score 30 min of

instruction from each lesson. Comparatively, in this study, raters provided

scores for the whole lesson, which is in line with recommendations made

by Hill, Charalambous, and Kraft (2012) in a formal generalizability study. Fi-

nally, given MET’s intent to validate observation instruments for the purpose

of new teacher evaluation systems, they utilized a set of raters similar to

the school leaders and staff who will conduct these evaluations in practice.

In contrast, other research shows that raters who are selectively recruited

due to a background in mathematics or mathematics education and who

The CLASS instrument captures more general classroom
quality. By design, the instrument is split into three dimen-
sions. Based on factor analyses described above, I utilize two:
Classroom Emotional Support, which focuses on the classroom
climate and teachers’ interactions with students; and Class-
room Organization, including behavior management and pro-
ductivity of the lesson. Following the protocol provided by in-
strument developers, one certified and trained rater watched
and scored each lesson on 11 items for each fifteen-minute
segment on a scale from Low (1) to High (7). I reverse code
one item from the Classroom Organization dimension, “Neg-
ative Climate,” to align with the valence of the other items.
Therefore, in all cases, higher scores indicate better perfor-
mance. Using the same method as above, I estimate relia-
bilities of 0.55 for Classroom Emotional Support and 0.65 for
Classroom Organization.

In Table 2, I present summary statistics of teacher-level
scores that are averaged across raters (for the MQI), seg-
ments, and lessons. For the MQI, mean scores are slightly
lower than the middle of the scale itself: 1.26 for Ambitious
Mathematics Instruction (out of 3; sd = 0.12) and 1.12 for
Mathematical Errors and Imprecisions (out of 3; sd = 0.12).
For the CLASS, mean scores are centered above the middle
of the scale: 4.26 for Classroom Emotional Support (out of 7;
sd = 0.55) and 6.52 for Classroom Organization (out of 7; sd
= 0.44). Pairwise correlations between these teacher-level

complete initial training and ongoing calibration score more accurately on

the MQI than those who are not selectively recruited (Hill et al., 2012).
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Table 3

Variance decomposition of school-grade-year instructional quality

scores.

School Residual

Ambitious mathematics instruction 0.59 0.41

Mathematical errors and imprecisions 0.46 0.54

Classroom emotional support 0.45 0.55

Classroom organization 0.52 0.48

Notes: Sample includes 76 school-grade-years.

scores range from roughly zero (between Mathematical Errors
and Imprecisions and the two dimensions on the CLASS in-
strument) to 0.44 (between Classroom Emotional Support and
Classroom Organization). Ambitious Mathematics Instruction is
more consistently related to the other instructional quality
dimensions, with correlations between 0.19 and 0.34. These
correlations are high enough to suggest that high-quality
teachers who engage in one type of instructional practice
may also engage in others, but not too high to indicate that
dimensions measure the same construct.

As I discuss below, my identification strategy relies on
instructional quality scores at the school-grade-year level.
While this strategy loses between-teacher variation, which
likely is the majority of the variation in instructional quality
scores, I still find substantive variation in instructional qual-
ity scores within schools, across grades and years. In Table 3,
I decompose the variation in school-grade-year scores into
two components: the school-level component, which de-
scribes the percent of variation that lies across schools, and
the residual component, which describes the rest of the vari-
ation that lies within schools. For all four instructional qual-
ity dimensions, I find that at least 40% of the variation in
school-grade-year scores lies within schools. This leads me
to conclude that there is substantive variation within schools
at the school-grade-year level to exploit in this analysis.

In order to minimize noise in these observational mea-
sures, I use all available lessons for each teacher (Hill,
Charalambous, & Kraft, 2012). Teachers who participated in
the study for one year had three lessons, on average, while
those who participated in the study for two years generally
had six lessons. A second benefit of this approach is that it
reduces the possibility for bias due to unobserved classroom
characteristics that affect both instructional quality and stu-
dent outcomes (Kane, Taylor, Tyler, & Wooten, 2011).3 This is

3 Kane et al. (2011) argue that cotemporaneous measurement of teacher

observation scores and student outcomes may bias estimates due to class

characteristics that affect both the predictor and the outcome. I do not do so

here for both practical and substantive reasons. The sample of school-grade-

years in which all teachers have out-of-year observation scores is too limited

to conduct the same sort of analysis. In addition, as this study is interested

in the effect of instruction on student outcomes, I want to utilize scores that

capture the types of practices and activities in which students themselves

are engaged.

At the same time, I am able to examine the extent to which Kane et al.’s

hypothesis plays out in my own data. To do so, I explore whether changes in

classroom composition predict changes in instructional quality for those

45 teachers for whom I have two years of observation data. In Appendix

Table A1, I present estimates from models that regress each instruc-

tional quality dimension on a vector of observable class characteristics and

teacher fixed effects. Here, I observe that classroom composition only pre-

dicts within-teacher, cross-year differences in Classroom Emotional Support

(F = 2.219, p = 0.035). This suggests that attention to omitted variables

because, in roughly half of cases, scores represent elements
of teachers’ instruction from the prior year or future year,
in addition to the current year. Specifically, I utilize empiri-
cal Bayes estimation to shrink scores back toward the mean
based on their precision (see Raudenbush & Bryk, 2002). To
do so, I specify the following hierarchical linear model using
all available data, including teachers beyond my identifica-
tion sample

OBSERVATIONl j = µ j + εl j (1)

where the outcome is the observation score for lesson l and
teacher j, µj is a random effect for each teacher j, and ɛlj is
the error term. I utilize standardized estimates of the teacher-
level random effect as each teacher’s observation score. Most
distributions of these variables are roughly normal. For iden-
tification, I average these scores within each school-grade-
year. I do not re-standardize these school-grade-year scores
in order to interpret estimates in teacher-level standard de-
viation units, which are more meaningful than school-grade-
year units.

3.2.2. Student demographic and test-score data
One source of student-level data is district administrative

records. Demographic data include gender, race/ethnicity,
SPED status, LEP status, and FRPL eligibility. I also utilize
prior-year test scores on state assessments in both math
and reading, which are standardized within district by grade,
subject, and year using the entire sample of students in each
district, grade, subject, and year.

Student outcomes were measured in both fall and spring
on a new assessment developed by researchers who created
the MQI in conjunction with the Educational Testing Service
(see Hickman, Fu, & Hill, 2012). Validity evidence indicates
internal consistency reliability of 0.82 or higher for each form
across the relevant grade levels and school years. Three key
features of this test make it ideal for this study. First, the test
is common across all districts and students in the sample,
which is important given evidence on the sensitivity of sta-
tistical models of teacher effectiveness to different achieve-
ment tests (Lockwood, et al., 2007; Papay, 2011). Second, the
test is vertically aligned, allowing me to compare achieve-
ment scores for students in fourth versus fifth grade. Third,
the assessment is a relatively cognitively demanding test,
thereby well aligned to many of the teacher-level practices
assessed in this study, particularly those captured on the MQI
instrument. It likely also is similar to new mathematics as-
sessments administered under the Common Core (National
Governors Association Center for Best Practices, 2010). Lynch,
Chin, and Blazar (2015) coded items from this assessment for
format and cognitive demand using the Surveys of Enacted
Curriculum framework (Porter, 2002). They found that the
assessment often asked students to solve non-routine prob-
lems, including looking for patterns and explaining their rea-
soning. Roughly 20% of items required short responses.

3.2.3. Teacher survey
Information on teachers’ background, knowledge, and

skills were captured on a teacher questionnaire administered

related both to Classroom Emotional Support and student achievement may

be important.
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Table 4

Correlations between teacher practices, skills, and background characteristics.

Ambitious mathematics

instruction

Mathematical errors

and imprecisions

Classroom emotional

support

Classroom

organiza-

tion

Bachelor’s degree in education −0.14 −0.03 −0.07 0.13

Math coursework 0.08 0.08 0.15 0.30∗∗∗

Master’s degree 0.10 −0.05 0.00 −0.12

Traditional certification 0.09 −0.17∼ 0.12 0.12

Experience −0.07 0.15 −0.04 0.05

Mathematical content knowledge 0.26∗∗ −0.46∗∗∗ 0.03 0.01

Knowledge of student performance 0.18∼ −0.16 0.00 0.09

Preparation for class 0.02 0.07 −0.04 0.10

Formative assessment −0.01 0.24∗∗ 0.14 0.17∼

Notes: ∼ p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001.

in the fall of each year. Survey items about teachers’ back-
ground include whether or not the teacher earned a bache-
lor’s degree in education, amount of undergraduate or grad-
uate coursework in math and math courses for teaching
(2 items scored from 1 [No Classes] to 4 [Six or More Classes],
internal consistency reliability (α) = 0.66), route to certifica-
tion, and whether or not the teacher had a master’s degree
(in any subject). Relatedly, the survey also asked about the
number of years of teaching experience in math.

Next, I capture teachers’ knowledge of content and of
their students. Teachers’ content knowledge was assessed on
items from both the Mathematical Knowledge for Teaching
assessment (Hill, Schilling, & Ball, 2004) and the Mas-
sachusetts Test for Educator Licensure. Teacher scores were
generated by IRTPro software and were standardized in these
models using all available teachers, with a reliability of 0.92.
Second are scores from a test of teachers’ knowledge of stu-
dent performance. These scores were generated by provid-
ing teachers with student test items, asking them to predict
the percent of students who would answer each item cor-
rectly, then calculating the distance between each teacher’s
estimate and the actual percent of students in their class who
got each item correct. Similar to instructional quality scores,
I report reliability as adjusted intraclass correlations, which
are 0.71 and 0.74 for grades four and five, respectively. To ar-
rive at a final scale, I averaged across items and standardized.

Finally, two items refer to additional classroom behaviors
that aim to increase student achievement. The first is teach-
ers’ preparation for class, which asks about the amount of
time each week that teachers devoted to out-of-class activ-
ities such as grading, preparing lesson materials, reviewing
the content of the lesson, and talking with parents (4 items
scored from 1 [No Time] to 5 [More than six hours], α =
0.84). The second construct is formative assessment, which
asks how often teachers evaluated student work and pro-
vided feedback (5 items scored from 1 [Never] to 5 [Daily or
almost daily], α = 0.74).4

In Table 4, I present correlations between these charac-
teristics and the four instructional quality dimensions. The
strongest correlation is between Mathematical Errors and

4 Between three and six teachers are missing data for each of these con-

structs. Given that these data are used for descriptive purposes and as con-

trols, in these instances I impute the mean value for the district. For more

information on these scales, see Hill, Blazar, and Lynch (2015).

Imprecisions and mathematical content knowledge (r =
−0.46). This suggests that teachers’ knowledge of the con-
tent area is moderately to strongly related to their ability to
present correct material in class. The sign of this relationship
is correct, in that higher scores on Mathematical Errors and
Imprecisions means that more errors are made in instruction,
while higher scores on the content knowledge test indicate
stronger understanding of math. Content knowledge also is
related to Ambitious Mathematics Instruction (r = 0.26). In-
terestingly, math coursework is related to Classroom Orga-
nization, and Mathematical Errors and Imprecisions is related
to formative assessment (r = 0.24), even though these con-
structs are not theoretically related. Together, this suggests
that the dimensions of instructional quality generally are dis-
tinct from other measures often used as a proxy for teacher
or teaching quality.

4. Identification strategy and tests of assumptions

In order to estimate the relationship between high-
quality instruction and students’ mathematics achievement,
my identification strategy must address two main chal-
lenges: non-random sorting of students to teachers and
omitted measures of teachers’ skills and practices. I focus on
each in turn.

4.1. Non-random sorting of students to teachers

Non-random sorting of students to teachers consists of
two possible components: the sorting of students to schools
and of students to classes or teachers within schools. In
Table 5, I explore the extent to which these types of sort-
ing might bias results by regressing baseline test scores
on all four dimensions of instructional quality (see Kane
et al., 2011). Comparing teachers within districts, Ambi-
tious Mathematics Instruction is positively related to base-
line achievement. This suggests, unsurprisingly, that teachers
with higher-quality math instruction tend to be assigned to
higher-achieving students. Interestingly, though, only part of
this relationship is explained by differences in instructional
quality and student achievement across schools. Compar-
ing teachers within schools, the magnitude of the relation-
ship between Ambitious Mathematics Instruction and baseline
achievement is substantively smaller but still statistically
significant. Further, I now observe a positive relationship
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Table 5

Relationships between assigned students’ incoming achievement and in-

structional quality.

Within districts Within schools

Ambitious mathematics

instruction

0.180∗∗∗ 0.060∗

(0.026) (0.028)

Mathematical errors and

imprecisions

−0.022 −0.034

(0.021) (0.022)

Classroom emotional

support

−0.013 −0.018

(0.018) (0.023)

Classroom organization −0.003 0.087∗∗

(0.024) (0.029)

Notes: ∼ p< .10, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Columns contain estimates

from separate regressions. Robust standard errors in parentheses. All mod-

els control for district-by-grade-by-year fixed effects. Sample includes

3203 students, 111 teachers, and 76 school-grade-years.

between Classroom Organization and baseline test scores.
This indicates that within-school sorting and the matching of
students to teachers may occur differently than across-school
sorting but that it likely serves as an additional source of
bias.

In light of non-random sorting, I begin by specifying mod-
els that control for a host of observable student and class
characteristics, including prior achievement. Further, follow-
ing Kane, Taylor, Tyler, and Wooten (2011), I include school
fixed effects to account for unobserved differences across
schools, other than instructional quality, that also affect stu-
dent achievement. Finally, to address sorting of students to
classes or teachers within schools, I exploit an important lo-
gistical and structural constraint of schools – that students
may be sorted within but not across grades and years. This
is because, in most cases, students advance with a given
cohort from one grade to the next. Therefore, similar to
Rivkin, Hanushek, and Kain (2005), I exploit between-cohort
differences by aggregating teachers’ observation scores to
the school-grade-year level. They argue that “aggregation
to the grade level circumvents any problems resulting from
classroom assignment” (p. 426). Doing so restricts identify-
ing variation to that observed across grades – e.g., between
fourth-grade teachers in one year and fifth-grade teachers in
the same, following, or former school year. In a few instances
where grade-level composition changes from one year to the
next, there also is identifying variation between the set of
fourth-grade teachers in one year and the set of fourth-grade
teachers in the following or former school year, and similarly
for fifth-grade teachers in one year and fifth-grade teachers
in another year

The hypothesized model that describes this relationship
is outlined in Eq. (2):

Aidsgc jt = βOBSERVATIONdsgt + ζ
(

f (Aidsgc jt−1)
)

+πXidsgc jt + ϕX̄dsgc jt + σdgt + θs + εidsgc jt (2)

where Aidsgcjtis the end-of-year test score for student i in
district d, school s, grade g, and class c with teacher j at time
t; OBSERVATIONdsgt is a vector of instructional quality scores
that are averaged across teachers within each school-grade-
year; f (Aidsgc jt−1) is a cubic function of prior achievement
on the fall baseline assessment, as well as on the prior-year
state assessments in both math and reading; Xi is a vector
of observable student-level characteristics; X̄dsgc jt aggregates

these and prior achievement measures to the class level. I
include district-by-grade-by-year fixed effects, σ dgt, to ac-
count for differences in the scaling of state standardized test
scores. As discussed above, I also include fixed effects for
schools, θ s, as part of my identification strategy. I calculate
standard errors that are clustered at the school-grade-year
level to account for heteroskedasticity in the student-level
errors, ɛidsgcjt, and non-zero covariance among those students
attending the same school in the same grade and year (Kane,
Rockoff, & Staiger, 2008).

The key identifying assumption of this model is that
within-school, between-grade, and cross-cohort differences
in average instructional quality scores are exogenous (see
Woessmann & West, 2006 for a discussion of this assumption
and strategy as it pertains to class size). While the validity
of this assumption is difficult to test directly, I can examine
ways that it may play out in practice. In particular, this as-
sumption would be violated by strategic grade assignments
in which teachers are shifted across grades due to a particu-
larly strong or weak incoming class, or where students are
held back or advanced an additional grade in order to be
matched to a specific teacher.

Although these practices are possible in theory, I present
evidence that such behavior does not threaten inferences
about variation in instructional quality scores. I do observe
that 30 teachers were newly assigned to their grade, ei-
ther because they switched from a different grade in the
prior year (before joining the study) or because they moved
into the district. In Table 6, I examine differences between
switchers and non-switchers on observable characteristics
within school-year cells. In addition to comparing teachers
on the characteristics listed in Tables 1 and 2, I include av-
erage scores on all three baseline achievement tests; I also
include state value-added scores in math.5 Here, I find that
switchers have students with lower prior-year achievement
on state math and reading exams (p = 0.037 and 0.002,
respectively). Importantly, though, there are no differences
between switchers and non-switchers on any of the obser-
vational rubric dimensions, any of the teacher survey con-
structs, or state value-added scores. Nor can I detect differ-
ences between these two groups when all observable traits
are tested jointly (F = 1.159, p = 0.315).6 This suggests that,
even though switchers tend to have lower-achieving stu-
dents, they are unlikely to be matched to these classes based
on observed quality. With regard to sorting of students to
grade, fewer than 20 were retained from the previous year
or skipped a grade. I drop these from the analytic sample.

A second assumption underlying the logic of this strat-
egy is that identification holds only when all teachers at a

5 Value-added scores are calculated from a model similar to Eq. (2). Here,

I regress end-of-year student mathematics test scores on state assessments

on a vector of prior achievement; student-, class-, and school-level covari-

ates; and district-by-grade-by-year fixed effects. I predict a teacher-level

random effect as the value-added score. I utilize all years of data and all

teachers in the sample districts and grades to increase the precision of my

estimates (Goldhaber & Hansen, 2012; Koedel & Betts 2011; Schochet &

Chiang, 2013).
6 In some instances, mean scores for both switchers and non-switchers

on standardized variables fall below or above zero (e.g., Classroom Emotional

Support). This is possible given that variables were standardized across all

teachers in the study, not just those in the identification sample.
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Table 6

Differences between teachers who switch grade assignments and those who

do not.

Switchers Non-switchers p-value on

difference

Instructional Quality

Dimensions

Ambitious mathematics

instruction

−0.05 0.03 0.660

Mathematical errors and

imprecisions

−0.07 −0.20 0.463

Classroom emotional

support

−0.18 −0.25 0.752

Classroom organization −0.22 −0.11 0.596

Other Measures of Teacher

Quality

Bachelor’s degree in

education

63.0 42.7 0.169

Math coursework 2.2 2.4 0.259

Master’s degree 74.4 77.4 0.781

Traditional certification 69.7 74.7 0.613

Experience 7.8 10.1 0.208

Mathematical content

knowledge

−0.19 −0.01 0.558

Knowledge of student

performance

0.20 0.06 0.519

Preparation for class 3.3 3.3 0.981

Formative assessment 3.5 3.7 0.318

Student Achievement

Measures

Fall project-administered

math test

−0.35 −0.12 0.318

Prior-year state math test −0.05 0.08 0.037

Prior-year state reading

test

−0.09 0.10 0.002

State value-added in math −0.03 −0.01 0.646

Join test F-statistic 1.098

p-value 0.367

Teacher-year observations 30 126

Notes: Means and p-values estimated from individual regressions that con-

trol for school-year, which is absorbed in the model. See Table 1 for scale of

teacher quality measures. All other items are standardized.

given school-grade-year are in the study. If only a portion
of the teachers participate, then there may be bias due to
the selection of students assigned to these teachers. To ad-
dress this concern, I limit my final analytic sample to school-
grade-years in which I have full participation of teachers. I
am able to identify these teachers as I have access to class
rosters for all teachers who work in the sample districts. I
exclude from these school-grade-year teams teachers who
teach self-contained special education or bilingual classes, as
the general population of students would not be sorted to
these teachers’ classes.7

By dropping certain school-grade-year observations, I
limit the sample from which I am able to generalize results.
In this sense, I compromise external validity for internal va-
lidity. However, below I discuss the comparability of teachers
and school-grade-years included in my identification sample
to those that I exclude either because they did not participate
in data collection through the NCTE project or because they
did not meet the sample conditions I describe above.

7 I identify these specialized classes in cases where more than 50% of stu-

dents have this designation.

4.2. Omitted variables bias

Given non-random sorting of instructional quality to
teachers, estimating the effect of these practices on mathe-
matics achievement also requires isolating them from other
characteristics that are related both to observation rubric
scores and to student test scores. I focus on characteristics
that prior research suggests may fit the definition of omitted
variables bias in this type of analysis.

Review of prior research indicates that several observable
characteristics are related both to student achievement and
instructional quality. Studies indicate that students experi-
ence larger test score gains in math from teachers with prior
education and coursework in this content area (Boyd, Gross-
man, Lankford, Loeb, & Wyckoff, 2009; Wayne & Youngs,
2003), some forms of alternative certification such as Teach
for America relative to traditional certification (Clark et al,
2013; Decker, Mayer, & Glazerman, 2004), more experience
in the classroom (Chetty et al., 2011; Papay & Kraft, forth-
coming; Rockoff, 2004), and stronger content knowledge
(Metzler & Woessmann, 2012). Emerging work also high-
lights the possible role of additional professional competen-
cies, such as knowledge of student performance, in raising
student achievement (Kunter, et al., 2013; Sadler, Sonnert,
Coyle, Cook-Smith, & Miller, 2013). These factors also appear
to predict some dimensions of instructional quality in this or
other datasets (see Table 3 and Hill, Blazar, & Lynch, 2015 for
further discussion).

Because it is possible that I am missing other important
characteristics – namely unobservable ones – I test the sen-
sitivity of results to models that include different sets of
teacher-level covariates. I also interpret results cautiously.
Despite this limitation, I believe that my ability to isolate in-
structional practices from a range of other teacher traits and
skills is an advance beyond similar studies.

5. Results

5.1. Main results

In Table 7a, I present models examining the relationship
between instructional quality and student achievement. This
first set of models examines the robustness of estimates to
specifications that attempt to account for the non-random
sorting of students to schools and teachers. I begin with a ba-
sic model (Model A) that regresses students’ spring test score
on teacher-level observation scores. I include a cubic func-
tion of fall/prior achievement on the project-administered
test and state standardized tests in math and reading; utiliz-
ing all three tests of prior achievement allows me to com-
pare students with similar scores on low- and high-stakes
tests across both subjects, increasing the precision of my
estimates. I also include district-by-grade-by-year dummy
variables to account for differences in scaling of tests; and
vectors of student-, class-, and school-level covariates. Next,
I replace school-level covariates with school fixed effects
(Model B). In Model C, I retain the school fixed effects and
replace observation scores at the teacher level with those
at the school-grade-year level. This model matches Eq. (2)
above. Finally, in order to ensure that school-specific year ef-
fects do not drive results, I replace school fixed effects with
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Table 7a

Relationships between students’ mathematics achievement and instructional quality, accounting for non-

random sorting.

Model A Model B Model C Model D

Ambitious mathematics instruction 0.061 0.095∗ 0.097∗ 0.109∗

(0.038) (0.037) (0.042) (0.052)

Mathematical errors and imprecisions −0.033 −0.040∼ −0.050∼ −0.053∼
(0.022) (0.023) (0.026) (0.029)

Classroom emotional support −0.028 −0.001 −0.032 −0.026

(0.021) (0.023) (0.035) (0.037)

Classroom organization 0.026 −0.002 −0.003 −0.015

(0.025) (0.024) (0.034) (0.037)

Student covariates X X X X

Class covariates X X X X

District-by-grade-by-year fixed effects X X X X

School covariates X

School fixed effects X X

Instructional quality at School-grade-year level X X

School-by-year fixed effects X

Notes: ∼ p < 0.10, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Columns contain estimates from separate regressions.

Robust standard errors clustered at the school-grade-year level in parentheses. Sample includes 3203 students,

111 teachers, and 76 school-grade-years.

school-by-year fixed effects in Models D. For all models, I
limit the sample to those school-grade-years where all teach-
ers from participating school-grades-years are in the study.
Robust standard errors clustered at the school-grade-year
level are reported in parentheses.8

In Model C, intended to account for non-random sorting
of students to schools and teachers, I find that instructional
quality dimensions focused on the mathematics presented
in the classroom are related to students’ math achievement.
Specifically, I find a statistically significant and positive co-
efficient for Ambitious Mathematics Instruction of 0.10 sd; the
coefficient for Mathematical Errors and Imprecisions of −0.05
sd is marginally significant.

Interestingly, these estimates are larger in magnitude
than those from Models A and B. Comparison of estimates
to Model A implies that schools and/or classrooms where in-
struction is higher quality tend to have below-average test-
score growth. The fact that estimates in Model C is larger than
those in Model B is surprising. By limiting variation to school-
grade-years, I expected to calculate lower-bound estimates of
the relationship between instructional quality and student
achievement (see Rivkin, et al., 2005). One possible expla-
nation for my findings may be that school-grade-year scores
are picking up the quality of teaching teams, which also is
related to student achievement. At the same time, these dif-
ferences are not large. Further, standard errors are larger in
Model C than in Model B, as I would expect given more lim-
ited variation in my main predictor variables. Finally, I find
that estimates in Model D, which replace school fixed ef-
fects with school-by-year fixed effects, are similar in mag-
nitude to those in Model C. This indicates that year effects do
not drive results. As before, standard errors are larger than
those in Model C given more limited identifying variation. I
find no statistically significant relationships for the two other
dimensions of instruction.

8 I also test the robustness of results to clustering of standard errors at

the school-year level, and find that standard errors and significance levels

presented below do not change substantively.

In Table 7b, I re-estimate results from Model C controlling
for different sets of teacher characteristics. I focus on four cat-
egories of covariates: education and certification (Model E),
teaching experience (Model F), knowledge (Model G), and
non-instructional classroom behaviors (Model H). In Model
I, I include all four sets of predictors. Similar to instruc-
tional quality dimensions, these covariates are averaged to
the school-grade-year level. Here, I find that estimates for
Ambitious Mathematics Instruction are fairly robust to inclu-
sion of these control variables. In Model G, which controls
for two measures of teacher knowledge, I find a marginally
significant estimate of 0.08 sd. This slight attenuation makes
sense given the positive relationship between mathemati-
cal content knowledge and Ambitious Mathematics Instruc-
tion noted earlier. Interestingly, coefficients from models that
include other sets of covariates are slightly larger than my
estimate of 0.10 sd from Model C; in Model I, which con-
trols for all teacher characteristics, the resulting estimate is
roughly 0.11 sd. One reason for this may be that be these ad-
ditional predictors are negatively related either to instruc-
tional quality or to student achievement. Earlier, I showed
a negative, though not statistically significant, correlation
between Ambitious Mathematics Instruction and bachelor’s
degree in education; here, I observe small but negative re-
lationships to student achievement for bachelor’s degree in
education, math coursework, traditional certification, and
preparation for class. I am cautious in placing too much em-
phasis on these differences, as they are not large. However,
these patterns suggest that some omitted variables may lead
to upward bias while others lead to downward bias.

The relationship between Mathematical Errors and Impre-
cisions and student achievement is more sensitive to inclu-
sion of control variables. Original estimates from Model C
are attenuated most significantly when controlling for teach-
ers’ mathematical content knowledge; the resulting estimate
of roughly −0.04 sd in Model G is no longer marginally sta-
tistically significant. This attenuation is unsurprising given a
moderate to strong relationship between Mathematical Errors
and Imprecisions and mathematical content knowledge noted
earlier (r = −0.46). Therefore, it is difficult to tell whether
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Table 7b

Relationships between students’ mathematics achievement and instructional quality, accounting for possible

“Omitted” variables.

Model E Model F Model G Model H Model I

Ambitious mathematics instruction 0.124∗∗ 0.096∗ 0.083∼ 0.121∗∗ 0.114∗

(0.042) (0.039) (0.045) (0.041) (0.044)

Mathematical errors and imprecisions −0.049∼ −0.049∼ −0.035 −0.038 −0.028

(0.027) (0.029) (0.026) (0.027) (0.035)

Classroom emotional support −0.038 −0.031 −0.025 −0.044 −0.041

(0.031) (0.036) (0.036) (0.034) (0.036)

Classroom organization 0.010 −0.002 −0.009 −0.002 −0.002

(0.035) (0.033) (0.034) (0.035) (0.039)

Bachelor’s degree in education 0.010 −0.004

(0.065) (0.072)

Math coursework −0.027 −0.019

(0.021) (0.028)

Master’s degree 0.086 0.022

(0.070) (0.075)

Traditional certification −0.013 −0.019

(0.068) (0.077)

Experience −0.001 −0.000

(0.004) (0.005)

Mathematical content knowledge 0.017 0.008

(0.020) (0.031)

Knowledge of student performance 0.035 0.038

(0.041) (0.044)

Preparation for class −0.054∼ −0.044

(0.030) (0.038)

Formative assessment 0.028 0.027

(0.032) (0.037)

Notes: ∼ p< .10, ∗p<.05, ∗∗p<.01, ∗∗∗p<.001. Columns contain estimates from separate regressions. Robust standard

errors clustered at the school-grade-year level in parentheses. All models control for student and class covariates,

as well as district-by-grade-by-year and school fixed effects. Instructional quality and background characteristics

are averaged at the school-grade-year level. Sample includes 3203 students, 111 teachers, and 76 school-grade-

years.

student achievement is negatively impacted by teachers’ lack
of content knowledge, the way that this lack of knowledge
leads to errors and imprecisions in the presentation of ma-
terial, or a related construct. When I include all sets of pre-
dictors in the same model (Model I), the estimate for Mathe-
matical Errors and Imprecisions is -0.03 sd and not statistically
significant.

5.2. Generalizability of results beyond identification sample

Finally, in Table 8, I examine whether teachers and schools
included in my identification sample are representative of
those in their respective districts. Because I do not have in-
structional quality scores for all district teachers, for this
analysis I draw on mathematics value-added scores using
state assessment data. I also compare observable character-
istics of school-grade-years from my identification sample to
those across the rest of the sample districts, looking for dif-
ferences on each characteristic individually and as a group.
P-values testing the difference between sample means are
calculated through a regression framework that controls for
district, as recruitment of schools and teachers occurred
at this level. In both cases of teachers and school-grade-
years, I cannot reject the null hypothesis that my identifi-
cation sample is the same as the rest of the district popu-
lations (for differences in teachers’ value-added scores: p =
0.123; for joint differences in observable characteristics of

Table 8

Differences between identification sample and district populations.

In identification

sample

Out of

identification

sample

p-value on

difference

Teacher

Characteristic

State value-added −0.02 0.00 0.123

Teacher-year

observations

156 1334

School-Grade-Year

Characteristics

Male 49.1 50.1 0.361

African-American 53.7 55.3 0.659

Asian 4.6 3.9 0.404

Hispanic 26.6 26.0 0.833

White 11.6 11.6 0.996

FRPL 74.2 76.3 0.504

SPED 17.1 15.7 0.240

LEP 21.3 20.8 0.810

Prior-year state

math test

−0.02 0.04 0.299

Prior-year state

reading test

0.00 0.05 0.409

Joint test F-statistic 0.902

p-value 0.531

School-grade-year

observations

76 511

Notes: Means and p-values calculated from individual regressions that con-

trol for district. School-grade-year demographic characteristics are per-

cents; test scores are standardized.
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school-grade-years: F = 0.902, p = 0.531). Therefore, I con-
clude that results likely generalizable to these populations.

6. Discussion and conclusion

This study provides some of the strongest evidence to
date on the relationship between specific instructional di-
mensions and students’ mathematics achievement. Like oth-
ers (e.g., Kane et al., 2013; Kane & Staiger, 2012; Kane et al.,
2011), I utilize observation instruments that capture in-
structional quality within teachers’ own classrooms. I also
draw on established econometric methods to account for
the non-random sorting of students to teachers (e.g., Rivkin,
et al., 2005). Importantly, I build on past work by exam-
ining multiple dimensions of teaching practice, including
content-specific elements of instruction and more general
pedagogical strategies. Further, I examine the sensitivity of
results to models that control for different sets of teacher
characteristics. This allows me to isolate dimensions of
instructional quality from the most likely observable charac-
teristics that might threaten the internal validity of my re-
sults. To my knowledge, no other studies are able to con-
trol for this broad set of teaching practices and teacher
characteristics. While it is possible that estimates are sen-
sitive to other observed or unobserved characteristics not
included in these data, my findings provide strong sugges-
tive evidence of teaching dimensions that support student
achievement.

Results indicate that inquiry-oriented instruction is pos-
itively related to student outcomes on a low-stakes math
test, with an effect size of roughly 0.10 sd. This finding
lends support to decades worth of reform to refocus mathe-
matics instruction toward inquiry and concept-based teach-
ing (National Council of Teachers of Mathematics, 1989,
1991,2000), as well as positive results of some of these types
of activities in laboratory settings (e.g., Star & Rittle-Johnson,
2009). In some analyses, I also find smaller effect sizes for
incorrect presentation of content, though estimates are sen-
sitive to the set of covariates included in the model, particu-
larly teachers’ content knowledge. At the same time, even the
smallest estimate of roughly 0.03 sd (see Model I in Table 7b)
is similar in magnitude to estimates of the relationship be-
tween mentor evaluations and student achievement (Rockoff
& Speroni, 2010), suggesting that this finding may still be
substantively significant.

Finally, I find no relationship between classroom climate
or classroom management and student achievement. These
results diverge from recent research highlighting the impor-
tance of classroom organization and interactions with stu-
dents, often above other classroom features (Grossman, Loeb,
Cohen, & Wyckoff, 2013; Stronge, Ward, & Grant, 2011). In
particular, Kane et al. (2011, 2012, 2013) found positive re-
lationships between these sorts of classroom practices, as
captured on the Framework for Teaching observation in-
strument, and student achievement; estimates were similar
in magnitude to the relationship I find between Ambitious
Mathematics Instruction and student outcomes. One reason
for these differences may be that these other studies did not
account for additional dimensions of teacher and teaching
quality. Therefore, the observed relationship between class-
room organization and student achievement may be driven

by other practices and skills that are related to this type of
instruction. Another reason may be that the outcome used to
measure math achievement in this study is a low-stakes test
that emphasizes cognitively demanding mathematics prac-
tices. Classroom organization and interactions with students
may in fact be important contributors to high-stakes achieve-
ment tests or non-cognitive outcomes. This is an important
topic for future research.

Evidence on the relationship between specific types of
teaching and student achievement raises the question of
how to get more teachers who engage in these practices
into classrooms. Following Murnane and Cohen (1986), I ar-
gue that incentives are unlikely to prove effective here, as
teachers may not know how to improve their instruction.
Therefore, I propose two possible pathways. First, an array of
recent literature highlights the potential use of observation
instruments themselves to remediate teacher practice. De-
spite mixed results on the effect of standard professional
development programs on teachers’ content knowledge, in-
structional practices, or student achievement (Garet et al.,
2011; Yoon, Duncan, Lee, Scarloss, & Shapley, 2007), new
experimental studies highlight positive effects of more in-
tensive coaching programs that utilize observation instru-
ments to improve teacher behaviors and, in some cases, stu-
dent outcomes (Allen, Pianta, Gregory, Mikami, & Lun 2011;
Blazar & Kraft, forthcoming; McCollum, Hemmeter, & Hsieh,
2011; Taylor & Tyler, 2012). Thus far, this sort of work has fo-
cused on use of observation instruments to capture general
teaching practices and those specific to literacy instruction.
However, it is possible that findings also extend to inquiry-
oriented practices in mathematics.

A second pathway to increase the quality of classroom
teaching may also focus on selective recruitment of teach-
ers with content-area expertise. My findings show a mod-
erate to strong relationship between teachers’ knowledge
of math and the way that this content is enacted in the
classroom. Further, I find suggestive evidence of a relation-
ship between incorrect presentation of content and stu-
dent outcomes. While more research is needed to confirm
these relationships, these patterns may inform processes
by which education preparation programs and state licens-
ing agencies screen prospective elementary math teach-
ers. A survey of degree pathways indicates minimal re-
quirements for entry and a high degree of variability in
the type of training pre-service teachers receive in math-
ematics. In addition, in all but a few states, elementary
teachers can pass their licensing exam without passing the
math sub-section (Epstein & Miller, 2011). It is possible
that creating more stringent requirements into the work-
force related to math knowledge could lead to more accu-
rate and precise presentation of content and to better student
outcomes.

Filling elementary classrooms with teachers who engage
in effective mathematics teaching practices will take time.
Doing so likely will entail a variety of efforts, including
improvements in professional development offerings that
engage teachers substantively around their own teaching
practices and stronger efforts to hire teachers with deep
knowledge of mathematics. Importantly, though, the educa-
tion community is beginning to gain an understanding of the
types of teaching that contribute to student achievement.
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Table A1

Relationships between instructional quality and class composition.

Ambitious mathematics

instruction

Mathematical errors

and imprecisions

Classroom emotional

support

Classroom

organization

Class size −0.069 0.020 −0.114 −0.029

(0.069) (0.059) (0.077) (0.061)

Male 0.016 −0.013 −0.002 −0.021

(0.012) (0.013) (0.014) (0.016)

African American 0.005 0.005 −0.038 0.022

(0.023) (0.026) (0.034) (0.029)

Asian −0.015 −0.016 −0.037 0.060

(0.037) (0.038) (0.052) (0.039)

Hispanic 0.002 0.003 −0.036 0.030

(0.022) (0.024) (0.034) (0.026)

White −0.017 0.012 0.005 0.035

(0.035) (0.035) (0.043) (0.036)

FRPL −0.014 0.000 0.012 0.016

(0.011) (0.013) (0.013) (0.011)

SPED −0.009 0.006 −0.035∗ −0.018

(0.010) (0.012) (0.013) (0.012)

LEP −0.003 0.004 0.004 0.014

(0.010) (0.017) (0.018) (0.019)

Fall project-administered math test 0.439 1.739 −2.384∗ 0.085

(0.666) (1.090) (0.880) (0.859)

Prior-year state math test −0.005 0.099 −0.984 −0.523

(0.630) (0.834) (0.877) (1.028)

Prior-year state reading test 0.475∗ −0.401 1.186∗∗ −0.366

(0.224) (0.462) (0.368) (0.421)

Joint test

F-statistic 1.652 0.580 2.219 1.624

p-value 0.125 0.842 0.035 0.133

Notes: ∼ p<0.10, ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. Columns contain estimates from separate regressions. Robust standard errors clustered at the school-grade-

year level in parentheses. All models include teacher fixed effects. Sample includes 45 teachers who were in the study for two years.
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