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Attending to General and Mathematics-Specific Dimensions of
Teaching: Exploring Factors Across Two Observation Instruments
David Blazara, David Braslowa, Charalambos Y. Charalambousb, and Heather C. Hilla

aHarvard Graduate School of Education; bUniversity of Cyprus

ABSTRACT
New systems that seek to evaluate teachers with regard to their classroom
quality often rely on observation instruments that capture general instructional
pedagogies. However, decades of research suggest that content-specific dimen-
sions of instruction also are important to differentiate teachers and improve
student outcomes. We explore the degree of overlap between a general and a
content-specific instrument when capturing upper elementary teachers’mathe-
matics instruction. To do so, we conducted exploratory and confirmatory factor
analyses on data from more than 2,000 videotaped lessons scored using both
the Classroom Assessment Scoring System, a general instrument, and the
Mathematical Quality of Instruction, a content-specific instrument. Findings
indicate that there is some overlap between instruments but that preferred
factor structures include both general and content-specific practices.

Introduction

As schools and districts revamp their approaches to teacher evaluation, many are using observations
of teaching practice as one metric of effectiveness (Center on Great Teachers and Leaders, 2013).
Although evaluating teachers using on-the-job performance measures is not a new endeavor
(Darling-Hammond, Wise, & Pease, 1983; Shavelson & Dempsey-Atwood, 1976), current
approaches are meant to improve upon “cursory evaluations” (Hill & Grossman, 2013, p. 371)
that did little to differentiate teachers with regard to performance standards (Weisberg, Sexton,
Mulhern, & Keeling, 2009). Specifically, new systems rely on research-based observation rubrics and
trained observers to ensure that these efforts meet stated goals.

Researchers who study these approaches to observation and evaluation highlight their potential to
improve the quality of the teacher workforce by providing individualized feedback about teachers’
instruction and matching them to appropriate development programs (Danielson & McGreal, 2000;
Darling-Hammond, 2013; Hill & Grossman, 2013; Odden, 2004; Papay, 2012). At the same time,
many of these same researchers raise concerns about logistical and practical constraints that schools
face in implementing teacher observation and feedback. Hill and Grossman (2013) articulated three
such challenges: (a) the use of general versus content-specific observation instruments, (b) the
limited expertise of personnel and school leaders who serve as the primary observers, and (c) the
capacity of schools to collect sufficient data on each teacher in a way that leads to robust and valid
inferences about their effectiveness in the classroom.

In this article we explore the first of these challenges, one that forces districts and schools to consider
their underlying assumptions about teaching and the nature of instructional guidance. For some, use of a
general instrument stems from a theoretical perspective on teaching in which generic teaching skills
transcend subject matter and discipline. Developers of one such instrument, the Framework for
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Teaching (FFT), imply that subject specificity is not a concern, stating, “Teaching, in whatever context,
requires the same basic tasks, namely, knowing one’s subject, knowing one’s students, having clear
outcomes, establishing a culture for learning, engaging students in learning, etc.” (Danielson Group,
2013b). This, in combination with practical challenges associated with the adoption of instruments and
training of raters, has led many states and districts to rely on general instruments that are agnostic to
content and grade-level differences across classrooms (Center on Great Teachers and Leaders, 2013).

However, the process of improving teaching requires targeted feedback tied directly to teachers’ own
strengths and weaknesses (Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 2009; Garet,
Porter, Desimone, Birman, & Yoon, 2001; Hill, 2007; Little, 2001; Wayne, Yoon, Zhu, Cronen, & Garet,
2008), many of which will be content specific (e.g., weak content or pedagogical content knowledge,
difficulty responding to students in a way that gets at the root of their misunderstanding, lack of
implementation of best practices in the content area). Improving content-specific teaching practices is
particularly important given the relationship between these skills and students’ academic performance (see,
e.g., Blazar, 2015, for these relationships as they pertain to mathematics, and Grossman, Loeb, Cohen, &
Wyckoff, 2013, as they pertain to English language arts), as well as students’ social and emotional
development including their self-efficacy in math (Blazar & Kraft, 2017). Thus, observations likely require
content-specific protocols and observers adept at differentiating teachers and instruction in this way.

The ways in which these perspectives and approaches to the development of observation instruments
play out in practice is not trivial. Two general instruments, the Classroom Assessment Scoring System
(CLASS) and the FFT, ask broadly about teachers’ “content understanding” (Pianta, Hamre, & Mintz,
2010) or “knowledge of content and pedagogy” (Danielson Group, 2013a). Comparatively, the
Mathematical Quality of Instruction (MQI) articulates more than 10 subject-specific competencies
(e.g., linking between representations, providing mathematical explanations, exploring patterns and
generalizations) and provides examples on how observers should score each. Hill and Grossman
(2013) emphasized that, even when competencies listed on general and content-specific instruments
appear similar, they may serve different functions when applied in context. Take, for example, the
practice of providing feedback to students. From a content-independent perspective, this feedback needs
to be timely and descriptive, should elicit any clarification of students’ thinking, and should outline the
next steps that students need to undertake in order to improve their work (Stiggins & Chappuis, 2012).
From a mathematics-specific perspective, this feedback likely requires additional features, including
making public the most common student misconceptions and offering conceptual rather than purely
procedural remediation for incorrect responses.Whenmisconceptions are not present, a teacher offering
content-specific feedback may choose to ask whether the students’ strategy for solving a particular
problem was the most efficient, or whether alternative strategies exist (Ball, 1988; Lampert, 2001;
National Council of Teachers of Mathematics, 2014). In turn, the instructional guidance given to a
teacher could differ quite dramatically based on use of a general versus content-specific instrument.

In this article we explore the degree of overlap between a general and a content-specific instru-
ment and ask, To what extent do a generic and a content-specific instrument overlap in capturing
instructional quality in upper-elementary mathematics classes? To answer this question, we used data
from fourth- and fifth-grade teachers from five school districts, where teachers each had scores from
two observation instruments, the CLASS, a general instrument, and the MQI, a content-specific
instrument. Through correlational as well as exploratory and confirmatory factor analyses, we
examined the relationship between instructional quality scores captured by these two instruments.
We use the results of these analyses to discuss the practical tradeoffs when implementing evaluation
and instructional feedback systems in our conclusion.

Background

Many who study teaching view it as a complex craft made up of multiple dimensions and
competencies (e.g., Cohen, 2011; Lampert, 2001; Leinhardt, 1993). In particular, older (Brophy,
1986) and more recent (Grossman & McDonald, 2008; Hamre et al., 2013) work calls on researchers,
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practitioners, and policymakers to consider both general and content-specific elements of instruc-
tion. General classroom pedagogy often includes eliciting student thinking through effective ques-
tioning, giving timely and relevant feedback to students, and maintaining a positive classroom
climate (e.g., Pianta, Belsky, Vandergrift, Houts, & Morrison, 2008; Pianta & Hamre, 2009).
Content-specific elements, particularly in mathematics, include ensuring the accuracy of the content
taught, providing opportunities for students to think and reason about the content, and using
evidence-based best practices (e.g., linking between representations or using multiple solution
strategies in mathematics; Ball, Thames, & Phelps, 2008; Lampert, 2001; National Council of
Teachers of Mathematics, 1989, 1991, 2000).

However, research studies rarely integrate these views of teaching in practice. Most recent studies
of teaching quality largely draw on just one observation instrument, either general or content-
specific (see, e.g., Grossman et al., 2013; Hafen et al., 2015; Hill et al., 2008; Kane, Taylor, Tyler, &
Wooten, 2011; McCaffrey, Yuan, Savitsky, Lockwood, & Edelen, 2015; Pianta et al., 2008). This
tendency might be attributed to practical considerations (e.g., lack of resources to employ more than
one instrument) or deeper philosophical reasons as to what counts as quality teaching and how it can
best be measured. The few studies that have employed both general and more content-specific
instruments provide empirical evidence attesting to the importance of considering both types of
instruments as a means of better capturing instructional quality.

Our review of the research literature identified three studies that examine both general and content-
specific teaching practices concurrently. Two of these studies draw on data from the Measures of
Effective Teaching (MET) project, which includes scores on multiple observation instruments from
teachers across six urban school districts. Using a principal components analysis framework, Kane and
Staiger (2012) found that items tended to cluster within instrument to form up to three principal
components each: one that captured all competencies from a given instrument simultaneously,
analogous to a single dimension for “good” teaching; a second that focused on classroom or time
management; and a third that captured a specific competency highlighted by the individual instrument
(e.g., teachers’ ability to have students describe their thinking for the FFT, and classroom climate for
the CLASS). Using the same data, McClellan, Donoghue, and Park (2013) examined overlap between
general and content-specific observation instruments. Factor analyses indicated that instruments did
not have the same common structure. In addition, factor structures of individual instruments were not
sensitive to the presence of additional instruments, further suggesting independent constructs.
Without much overlap between instruments, the authors identified as many as 12 unique factors. In
the third study, Lockwood, Savitsky, and McCaffrey (2015) analyzed data from lessons scored on three
observation instruments, two general (CLASS and FFT) and one content-specific (either the MQI for
math lessons or the Protocol for Language Arts Teaching for English language arts lessons). Using
Bayesian exploratory factor analysis to account for how dimensions were ordered, they found two
distinct teaching constructs: one for teachers’ instructional practice and the other for classroom
management. Unlike in the MET study, items from different instruments did tend to cluster onto
the same factor. Together, this work suggests that instruments that attend solely to general or content-
specific aspects of instruction may miss other important elements of teaching.

At the same time, these findings point to a challenge often associated with looking for factors
across instruments: the existence of instrument-specific variation. Due to differences in the design
and implementation of each instrument—such as the number of score points, the construction of
dimensions, or the pool of raters—scores will tend to cluster more strongly within instruments than
across them (Crocker & Algina, 2008). Therefore, distinctions found between teaching constructs
across instruments may be driven by measurement artifacts (D. T. Campbell & Fiske, 1959).

To our knowledge, no research has explored the measurement artifacts associated with use of
multiple observation instruments in the context of teaching quality. However, a handful of studies
examining factor structures from a single instrument have found that more complex modeling
strategies that account for construct-irrelevant sources of variation often lead to different solutions
than factor structures from simpler models. For example, using confirmatory factor analysis (CFA),
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McCaffrey et al. (2015) found that hierarchical models that accounted for rater errors led to a more
parsimonious structure of the CLASS instrument than models in which teacher-level scores were
conflated with rater error. When using CFA to specify bifactor models, Hamre, Hatfield, Pianta, and
Jamil (2014) also found a more parsimonious structure for the CLASS instrument than was
demonstrated in prior work. In a study using multiple observation instruments, Lockwood et al.
(2015) accounted for construct-irrelevant variance due to segments, lessons, and raters, finding a
similar number of factors as the studies just mentioned; however, their work did not account for
instrument-specific variance.

Additional studies outside of the teaching quality literature suggest that bifactor CFA offers a way to
separate out the variation introduced by different methods or instruments, including those that seek to
capture respondents’ personality traits and academic achievement/aptitude (Chen, Hayes, Carver,
Laurenceau, & Zhang, 2012; Gustafsson & Balke, 1993). We build on these approaches to examine
overlap between teaching quality scores captured by the CLASS and MQI observation instruments.

Research hypotheses

Our analyses were guided by hypotheses surrounding the intended structures of both the CLASS and
MQI instruments. The CLASS includes 11 items split into three theoretically distinct domains (see
Table 1 for a full list of items and descriptions): “Emotional Support” captures “teachers’ abilities to
support social and emotional functioning in the classroom”; “Classroom Organization” focuses on
“classroom practices that contribute to students’ self-regulatory abilities”; and “Instructional
Support” takes a general view of the content, curriculum, and learning activities, and in particular
“the ways in which teachers implement these to effectively support cognitive and academic devel-
opment” (Pianta & Hamre, 2009, p. 113). A 12th item, Student Engagement, is separated into its own
domain. Several factor analyses conducted by instrument developers support this structure (Bell,
Gitomer, McCaffrey, Hamre, & Pianta, 2012; Hafen et al., 2015; Hamre et al., 2013). However, other
studies highlight variation in the factor structure of the CLASS, particularly when specifying more
complex models including bifactor or hierarchical CFA models (Hamre et al., 2014; Kane & Staiger,
2012; McCaffrey et al., 2015). Generally, this latter work points to two prominent factors related to
teachers’ positive management and routines, and their cognitive facilitation. In light of these mixed
findings, some researchers (Sandilos, DiPerna, & Family Life Project Key Investigators, 2014) have
called for continued examination of factor structures in the CLASS instrument.

The MQI includes 13 items that also have a theoretically driven design laid out by instrument
developers (see Table 2 for a full list of items and descriptions): “Richness of theMathematics” captures
the “depth of the mathematics offered to students . . . focus[ing] either on the meaning of facts and
procedures or on key mathematical practices”; “Working with Students and Mathematics” captures
“whether teachers can understand and respond to students’ mathematically substantive productions
(utterances or written work) or mathematical errors”; “Student Participation in Meaning-Making and
Reasoning” captures “evidence of students’ involvement in cognitively activating classroomwork”; and
“Errors and Imprecisions” focuses on “teacher errors or imprecision of language and notation,
uncorrected student errors, or the lack of clarity/precision in the teacher’s presentation of the content”
(MQI, 2014). To date, instrument developers have not published formal factor analyses.

When mapping the content of the CLASS to the MQI, we envisioned a spectrum of teaching
practices, with some more focused on content than others. On one extreme is Classroom
Organization from the CLASS, which is theoretically unrelated to the specific content delivered in
the classroom (Brophy & Good, 1986; Muijs et al., 2014) and which we hypothesized would form a
unique factor from any of the instructional components captured by either the CLASS or the MQI.
In prior work, this factor was found to be distinct from other instructional components of the
CLASS, even when using either simpler or more complex factor structures than the typical three-
factor structure advanced by instrument developers (Hamre et al., 2013; Kane & Staiger, 2012;
McCaffrey et al., 2015).
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On the other extreme is Instructional Support, which includes some items that have theoretical
overlap with a content-specific instrument. In particular, the Content Understanding item from
CLASS’s Instructional Support dimension might align with multiple items and dimensions from the
MQI. At face value, other items from Instructional Support, including Instructional Learning
Formats, Analysis and Problem Solving, and Quality of Feedback, appear also to align with dimen-
sions of the MQI that capture the quality of teachers’ interactions with students and the extent to
which these interactions develop intellectual challenge (Pianta & Hamre, 2009), namely, “Richness of
the Mathematics,” “Working with Students and Mathematics,” and “Student Participation in
Meaning-Making and Reasoning.” However, as described earlier by Hill and Grossman (2013), a
content-specific instrument such as the MQI likely enables observers to capture subtle distinctions in
teachers’ interactions with students around the content. Thus, we hypothesized that the MQI would
capture additional variability in teachers’ mathematics instruction than could be captured by the
CLASS instrument, leading to correlated but unique factors.

Our interpretation of the CLASS instrument suggests that the third dimension, Emotional
Support, falls in the middle of the spectrum of general to content-specific teaching practices. We

Table 1. Item Descriptions from the Classroom Assessment Scoring System (CLASS) Instrument.

Items Description

Classroom organization
Negative climate Negative climate reflects the overall level of negativity among teachers and students in the class.
Behavior management Behavior management encompasses the teacher’s use of effective methods to encourage desirable

behavior and prevent and redirect misbehavior.
Productivity Productivity considers how well the teacher manages time and routines so that instructional time

is maximized. This dimensions captures to degree to which instructional time is effectively
managed and down time is minimized for students.

Emotional support
Positive climate Positive climate reflects the emotional connection and relationships among teachers and students,

and the warmth, respect, and enjoyment communicated by verbal and nonverbal interactions.
Teacher sensitivity Teacher sensitivity reflects the teacher’s timely responsiveness to the academic, social/emotional,

behavioral, and developmental needs of individual students and the entire class.
Respect for student
perspectives

Regard for student perspectives captures the degree to which the teacher’s interactions with
students and classroom activities place an emphasis on students’ interests and ideas and
encourage student responsibility and autonomy. Also considered is the extent to which the
content is made useful and relevant to the students.

Instructional support
Instructional learning
formats

Instructional learning formats focuses on the ways in which the teacher maximizes student
engagement in learning through clear presentation of material, active facilitation, and the
provision of interesting and engaging lessons and materials.

Content understanding Content understanding refers to both the depth of lesson content and the approaches used to help
students comprehend the framework, key ideas, and procedures in an academic discipline. At a
high level, this refers to interactions among the teacher and students that lead to an integrated
understanding of facts, skills, concepts, and principles.

Analysis and problem
solving

Analysis and problem solving assesses the degree to which the teacher facilitates students’ use of
higher level thinking skills, such as analysis, problem solving, reasoning, and creation through the
application of knowledge and skills. Opportunities for demonstrating metacognition, that is,
thinking about thinking, are also included.

Quality of feedback Quality of feedback assesses the degree to which feedback expands and extends learning and
understanding and encourages student participation. Significant feedback may also be provided by
peers. Regardless of the source, the focus here should be on the nature of the feedback provided
and the extent to which it “pushes” learning.

Instructional dialogue Instructional dialogue captures the purposeful use of dialogue—structured, cumulative
questioning and discussion which guide and prompt students—to facilitate students’
understanding of content and language development. The extent to which these dialogues are
distributed across all students in the class and across the class period is important to this rating.

Student engagement This scale is intended to capture the degree to which all students in the class are focused and
participating in the learning activity presented and facilitated by the teacher. The difference
between passive engagement and active engagement is of note in this rating.

Note. Descriptions of items from Pianta, Hamre, and Mintz (2010).
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state this given that codes falling under this dimension, such as Teacher Sensitivity, require some
content-specific awareness around teachers’ ability to identify students with academic problems and
support them accordingly, as well as more general support of students’ emotional needs in the
classroom (Pianta et al., 2010). Thus, similar to Instructional Support, we hypothesized that this
dimension would be correlated with dimensions from the MQI that also capture teachers’ interac-
tions with students but would not cluster onto the same factor. This interpretation is consistent with
some empirical work in which items from Instructional Support and Emotional Support form a
single factor (Hamre et al., 2013; McCaffrey et al., 2015).

Finally, we hypothesized that items from the Errors and Imprecisions dimension from the MQI
would not be correlated with or cluster onto the same factor as any items from the CLASS, with the
possible exception of Content Understanding. We state this given the purely mathematical nature of
these items from the MQI. They do not intend to capture the sorts of teacher supports for students
that are the main focus of the CLASS (Pianta & Hamre, 2009).

Methods

Data and participants

Our sample consists of 390 fourth- and fifth-grade teachers from five school districts on the East
Coast of the United States. Four of the districts were part of a large-scale project from the National
Center for Teacher Effectiveness focused around the collection of observation scores and other
teacher characteristics. Teachers from the fifth district participated in a separate randomized con-
trolled trial of a mathematics professional development program that collected similar data on
teachers as the first project. Both projects spanned the 2010–11 through the 2012–13 school years.
In the first project, schools were recruited based on district referrals and size; the study required a
minimum of two teachers in each school and sampled grade. Of eligible teachers in these schools,
roughly 55% agreed to participate. Despite moderate participation rates, a comparison of teachers

Table 2. Item Descriptions from the Mathematical Quality of Instruction (MQI) Instrument.

Items Description

Richness of the mathematics
Linking and connections Linking and connections of mathematical representations, ideas, and procedures.
Explanations Explanations that give meaning to ideas, procedures, steps, or solution methods.
Multiple methods Multiple procedures or solution methods for a single problem.
Generalizations Developing generalizations based on multiple examples.
Mathematical language Mathematical language is dense and precise and is used fluently and consistently.

Working with students and mathematics
Remediation Remediation of student errors and difficulties addressed in a substantive manner.
Teacher uses student
productions

Responding to student mathematical productions in instruction, such as appropriately
identifying mathematical insight in specific student questions, comments, or work; building
instruction on student ideas or methods.

Student participation in meaning-making and reasoning
Student explanations Student explanations that give meaning to ideas, procedures, steps, or solution methods.
SMQR Student mathematical questioning and reasoning, such as posing mathematically motivated

questions, offering mathematical claims or counterclaims.
ETCA Task cognitive demand, such as drawing connections among different representations, concepts,

or solution methods; identifying and explaining patterns.
Errors and imprecisions
Major errors Major mathematical errors, such as solving problems incorrectly, defining terms incorrectly,

forgetting a key condition in a definition, equating two nonidentical mathematical terms.
Language imprecisions Imprecision in language or notation, with regard to mathematical symbols and technical or

general mathematical language.
Lack of clarity Lack of clarity in teachers’ launching of tasks or presentation of the content.

Note. Descriptions of items from Mathematical Quality of Instruction (MQI; 2014). SMQR = Student Mathematical Questioning and
Reasoning; ETCA = Enacted Task Cognitive Activation.
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who chose to participate in the project and those who did not suggests no differences in their value-
added scores on state mathematics tests (Blazar, Litke, & Barmore, 2016). In the second study, we
included only the treatment teachers for the first 2 years, as observation data were not collected for
the control group teachers. We have video data on teachers in both groups in the third year.

Teachers’mathematics lessons (N = 2,276) were captured over a 3-year period, with a yearly average
of three lessons per teacher for the first project and six lessons per teacher for the second project.
Videos were recorded using a three-camera, unmanned unit; site coordinators turned the camera on
prior to the lesson and off at its conclusion. Most lessons lasted between 45 and 60 min. Teachers were
allowed to choose the dates for capture in advance and were directed to select typical lessons and
exclude days on which students were taking a test. Although it is possible that these videotaped lessons
were different from teachers’ general instruction, teachers did not have any incentive to select lessons
strategically as no rewards or sanctions were involved with data collection. In addition, analyses from
the MET project indicate that teachers are ranked almost identically when they choose lessons to be
observed compared to when lessons are chosen for them (Ho & Kane, 2013).

The research projects scored these lessons using both the CLASS and MQI instruments. Data for the
CLASS andMQI were generated from separate scoring protocols based on decision rules set by instrument
developers. For the CLASS, one rater watched each lesson and scored teachers’ instruction on 12 items for
each 15-min segment on a scale from 1 (low) to 7 (high). Raters were recommended to the research projects
by instrument developers based on their work as raters in other studies. The project recruited additional
raters who were undergraduates from local colleges. For the MQI, two raters watched each lesson and
scored teachers’ instruction on 13 items for each 7½-min segment on a scale from 1 (low) to 3 (high). Raters
were recruited from a separate pool of applicants based on their background in mathematics. Project
leaders posted notices on mathematics education listservs and sent e-mails to colleagues working in
mathematics education departments (see Hill, Charalambous, Blazar, et al., 2012, for more information).
For both instruments, raters had to complete an online training, pass a certification exam, and participate in
ongoing calibration sessions. Raters were not provided any background information on teachers. One item
from the CLASS (Negative Climate) and three from the MQI (Major Errors, Language Imprecisions, and
Lack of Clarity) have a negative valence, which we maintained in this analysis.

For our primary analyses, we reduced these raw data to a teacher-level data set by averaging
scores across raters (for the MQI), segments, and lessons (both instruments). Our primary reason for
doing so was that both observation instruments have been used primarily to draw inferences about
individual teachers (Hill, Charalambous, Blazar, et al., 2012; Hill, Charalambous, & Kraft, 2012; Kane
& Staiger, 2012; McClellan et al., 2013; Pianta & Hamre, 2009). Later in this article, we describe
sensitivity analyses that examined the robustness of findings to use of additional data sets that
allowed us to account for sources of variation—that is, raters, segments, and lessons—that were
masked by aggregating the data to this level.

We present descriptive statistics on these teacher-level scores in Table 3. For the CLASS instru-
ment, many items have means around the middle of the 7-point scale and are roughly normally
distributed. Some exceptions include Negative Climate, which has a strong left skew, and both
Behavior Management and Productivity, which have moderate right skews. For the MQI instrument,
means tend to sit below the middle of the 3-point scale. Some items including Explanations,
Mathematical Language, Remediation, and Enacted Task Cognitive Activation are roughly normally
distributed; others have a long right tail.

Analysis strategy

We conducted three sets of analyses. We began by examining pairwise correlations of items across
instruments. This allowed us to explore the degree of potential overlap in the dimensions of
instruction captured by each instrument. Next, we conducted a set of exploratory factor analyses
(EFA) to identify the number of factors we might expect to see, both within and across instruments.
In running these analyses, we attempted to get parsimonious models that would explain as much of
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the variation in the assigned teaching quality ratings with as few factors as possible. We opted for
oblique rotations (i.e., direct oblimin rotation), which allow the extracted factors to be correlated.
We did so given theory (Hill, 2010; Hill, Kapitula, & Umland, 2011; Pianta & Hamre, 2009) and
empirical findings (Hill et al., 2008; Pianta et al., 2008) suggesting that the different constructs within
each instrument are intercorrelated.1

Although we conducted this EFA to look for cross-instrument factors, prior research suggests that
we would not expect to see much overlap across instruments because of the substantial variation
attributable to each instrument (McClellan et al., 2013). Therefore, we used confirmatory factor
analyses (CFA) to account for construct-irrelevant variation caused by the use of two instruments.2

In particular, we utilized bifactor models (Chen et al., 2012) to extract instrument-specific variation
and then compared the fit of various factor structures that allowed items to cluster across instru-
ments. In these models, all items were specified to load on one instrument factor (CLASS or MQI)
and one instructional factor. To help support our interpretation of these models, we also compared
results to nonbifactor CFA models.

Table 3. Descriptive Statistics of Teacher-Level Observation Scores.

Items M SD Maximum Minimum

CLASS
Negative climate 1.23 0.31 4.00 1.00
Behavior management 6.02 0.62 7.00 2.73
Productivity 6.30 0.45 7.00 3.93
Positive climate 4.56 0.69 6.33 2.50
Teacher sensitivity 4.56 0.51 6.00 2.77
Respect for student perspectives 3.41 0.58 4.93 1.68
Instructional learning formats 4.46 0.45 5.67 3.00
Content understanding 4.23 0.54 5.75 2.00
Analysis and problem solving 2.98 0.59 4.50 1.18
Quality of feedback 4.12 0.65 6.17 1.88
Instructional dialogue 3.81 0.62 5.53 1.93
Student engagement 5.19 0.50 7.00 3.50

MQI
Linking and connections 1.32 0.21 2.27 1.00
Explanations 1.27 0.15 1.88 1.00
Multiple methods 1.15 0.13 1.76 1.00
Generalizations 1.04 0.05 1.33 1.00
Mathematical language 1.47 0.20 2.25 1.00
Remediation 1.37 0.17 2.08 1.00
Teacher uses student productions 1.21 0.15 1.72 1.00
Student explanations 1.21 0.15 1.83 1.00
SMQR 1.21 0.14 1.78 1.00
ETCA 1.32 0.19 2.06 1.00
Major errors 1.08 0.09 1.86 1.00
Language imprecisions 1.17 0.12 1.69 1.00
Lack of clarity 1.12 0.12 2.14 1.00

Note. Classroom Assessment Scoring System (CLASS) items are on a 7-point scale, and Mathematical Quality of Instruction (MQI)
items are on a 3-point scale. SMQR = Student Mathematical Questioning and Reasoning; ETCA = Enacted Task Cognitive
Activation.

1To ensure that the resulting factor solutions were not affected by the differences in the scales used across the two instruments
(MQI uses a 3-point scale, whereas CLASS employs a 7-point scale), we ran the analyses twice, first with the original instrument
scales and a second time collapsing the CLASS scores into a 3-point scale (1–2 = low, 3–5 = mid, 6–7 = high) that aligns with the
developers’ use of the instrument (see Pianta & Hamre, 2009). Because there were no notable differences in the factor solutions
obtained from these analyses, in what follows we report on the results of the first round of analyses, in which we used the
original scales for each instrument.

2Generally, CFA involves using null hypothesis significance testing to examine whether there is evidence to support a theorized
model. In some instances, CFA is used beyond a strictly confirmatory approach (i.e., testing only the theorized models at hand); it
also can be used for model generation purposes, namely to generate different models, which satisfy three conditions: (a) they
make theoretical sense, (b) they are reasonably parsimonious, and (c) their correspondence to the data is “acceptably close” (R. B.
Kline, 2011, p. 8). Like others who have used CFA in this model-building fashion (see, e.g., Fabrigar, Wegener, MacCallum, &
Strahan, 1999), we looked at incremental improvements in fit to evaluate different instructional factor structures.
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Three constraints—both methodological and substantive—guided our construction of the
bifactor CFA models. First, we could not allow all items from the same instrument to cluster
together to form one instructional factor, because the instrument factor would be identical to the
instructional factor. Second, for the CLASS and MQI instrument factors to extract instrument-
specific variation, it was necessary to have at least one instructional factor with items from both
the CLASS and MQI. This cross-instrument instructional factor ensures that shared variance
caused by characteristics of instruction is explained by the instructional factors, whereas the
instrument factors explain other sources of shared variation uncorrelated with instruction (for
more information on this approach as it pertains to the multitrait multimethod analysis, see Pohl
& Steyer, 2010). Inclusion of a cross-instrument instructional factor also aligns with our main
purpose for specifying bifactor models: to examine the degree of overlap of items from the
CLASS and MQI instruments, after accounting for variance attributed to using different instru-
ments. Last, the instrument factors were constrained to be uncorrelated with the instructional
factors to ensure that the variation captured by the instrument factors did not include variation
attributable to the instructional characteristics being modeled.

One concern when attempting to account for instrument-specific variation is that these
factors may, in fact, capture some variation in teaching ability in addition to the noninstruc-
tional method or instrument variance they were designed to capture. As such, our bifactor CFA
approach may introduce additional instructional factors that are more than pure nuisance. At
the same time, introducing these factors allows for comparisons of fit among models with cross-
instrument factor structures of theoretical interest by accounting for the instrument-specific
variance—both instructional and noninstructional—that is uncorrelated with the instructional
factors of interest. We interpret models next in light of this challenge.

Some researchers have raised concern about additional sources of construct-irrelevant
variation that can influence observed factor structures (McCaffrey et al., 2015). There are
five such sources of variation in our data set: raters, segments, lessons, teachers, and instru-
ments. Although Savitsky and McCaffrey (2014) were able to use Bayesian methods to
simultaneously model variation caused by raters, segments, observations, and teachers, we
were unable to do so in our analysis for two reasons. First, the scoring design differed across
the two instruments, with different pools and numbers of raters used for each instrument,
hindering our ability to model rater effects along with other sources of variation. Second, the
bifactor CFA models described next already are computationally challenging when accounting
for two sources of variation (instrument and teacher). Models including additional sources of
random variation often failed to converge.

Despite our inability to simultaneously model all possible sources of variation, we attempted
to understand the extent to which this limitation might affect our results with three supple-
mentary analyses. First, we fit models in which teacher-level scores were adjusted for rater
severity. Here, a differential was calculated for each rating based on how far it was from the
average of the segment ratings for that teacher. Severity scores were calculated for each rater by
averaging these differentials. We also fit two nonbifactor multilevel CFA models: one with
segments nested within teachers, and another with lessons nested within teachers.3 (CFA models
simultaneously accounting for all three facets did not converge.) These additional analyses
(available upon request) produced factor structures identical to that from our teacher-level
analysis, so we present results only from this latter analysis.

3We note two important differences between instruments at the segment level. First, whereas the MQI has two raters score
instruction, the CLASS has only one. Therefore, for the MQI, we averaged scores across raters within a given segment to match
the structure of the CLASS. Second, whereas the MQI has raters provide scores for each 7½-min segment, the CLASS instrument
has raters do so every 15 min. Therefore, to match scores at the segment level, we assigned CLASS scores for each 15-min
segment to the two corresponding 7½-min segments for the MQI.
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Results

Our correlation matrix shows that some items on the CLASS and MQI are moderately correlated at
the teacher level (see Table 4). For example, both Analysis and Problem Solving and Instructional
Dialogue from CLASS are correlated with multiple items from the MQI (Mathematical Language,
Teacher Uses Student Productions, Student Explanations, Student Mathematical Questioning and
Reasoning, and Enacted Task Cognitive Activation) above 0.30. Three items from the MQI—
Mathematical Language, Teacher Uses Student Productions, and Student Mathematical
Questioning and Reasoning—are correlated with multiple items from the CLASS at similar magni-
tudes. The largest observed cross-instrument correlation of 0.41 is between Analysis and Problem
Solving and Teacher Uses Student Productions. Even though we ran 156 separate tests, the 104
statistically significant correlations are much higher than the 5% we would expect to see by chance
alone. These findings suggest that items from the two instruments may capture somewhat similar
facets of instruction. Therefore, factor structures might include factors with loadings across
instruments.

At the same time, there do appear to be distinct elements of instruction captured by each
instrument. The three items under the Errors and Imprecisions dimension from the MQI, embedded
deeply in a content-specific view of teaching, are not related to items from the CLASS. Five items
from the CLASS—the three items under the Classroom Organization dimension, Negative Climate,
Behavior Management, and Productivity, as well as Student Engagement and Positive Climate—
correlate with items from the MQI no higher than 0.30. These findings suggest that these items
might form distinct factors.

Next, we present results from the EFA in order to examine how these items cluster together to
form instructional factors. At this stage in our analysis, we did not expect items from different
instruments to load onto the same factor, as this analysis did not account for instrument-specific
variation. Rather, results from the EFA inform our CFA models and help place an upper bound on
the total number of factors we should model, both within and across instruments. First we note that
the Kaiser-Mayer-Olkin value in all factor analyses exceeded guidelines for acceptable threshold of
meritorious values (0.80), thus suggesting that the data lent themselves to forming groups of
variables, namely, factors (Kaiser, 1974). Initial results point to six factors with eigenvalues above
1.0, a conventionally used guideline for selecting factors (P. Kline, 1994); scree-plot analysis also
supports these six as unique factors (Hayton, Allen, & Scarpello, 2004). However, even after rotation,
no item loads onto the sixth factor at or above 0.40, which is often taken as the minimum acceptable
factor loading (Field, 2013; P. Kline, 1994). Two considerations guide our decision regarding which
of the more parsimonious models best fit our data: the percent of variance explained by each
additional factor, and the extent to which the factors have loadings that support substantive
interpretations. We discard the five-factor solution given that it explains only 3% more of the
variance in our data and therefore contributes only minimally to explaining the variance in the
assigned teaching quality ratings (Field, 2013; Tabachnick & Fidell, 2001). In addition, items that
load onto the fifth factor almost all cross-load onto other factors; generally these loadings are weak.
We also exclude one- and two-factor solutions, as neither explains more than 50% of variation in our
data, a guideline often used for accepting a factor structure (P. Kline, 1994).

In Tables 5 and 6, we present eigenvalues, percent of variance explained, and factor loadings for a
parsimonious list of factors generated from the remaining three- and four-factor solutions. In both
tables, cells are highlighted to identify instructional factors and potential cross-loadings (i.e., loadings
on two factors of similar magnitude). In the three-factor solution—in which we name factors
numerically (i.e., Factor 1, Factor 2, Factor 3)—23 of the 25 items load clearly onto only one factor.
Of the remaining two items, Analysis and Problem Solving from the CLASS loads strongly onto the
first factor and has a notable loading on the second factor; Mathematical Language from the MQI
has loadings on both the first and second factors of similar magnitudes, though both fall below the
acceptable guiding threshold of 0.40. Mathematical Language and Generalizations also have
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communalities that are considerably low. Together, these three factors explain roughly 53% of the
variance in our data, and all have acceptable reliability indices (0.91 for Factor 1, 0.87 for Factor 2,
and 0.76 for Factor 3).

With one exception, these factors do not align with structures laid out by instrument
developers. Factor 3 is consistent with the Errors and Imprecisions dimension from the MQI,
and thus we continue to use this name. Of the other two factors, one includes all items from the
CLASS instrument (Factor 1); the other includes the rest of the items from the MQI (Factor 2).
That said, correlations among these factors support substantive interpretations (see Table 7).
Factors 1 and 2 are moderately correlated (r = .33), suggesting that teachers who engage in a
range of organizational, instructional, and emotional supports for students may also provide rich
mathematical activities to students and positively engage them in this content. The negative
correlation between Factors 2 and 3 (r = –.23) also makes sense given the negative valence of
items under the Errors and Imprecisions dimension (Factor 3) and the positive valence of the
other items from the MQI (Factor 2). The correlation between Factors 1 and 3 is negligible (r =
.03), supporting our hypothesis that purely math-specific practices and the extent to which
teachers make errors in their instruction (Factor 3) would not overlap with or be related to
teachers’ general interactions with students in the classroom (Factor 1).

When we add a fourth factor, items from the CLASS split into two dimensions (see Table 6). One
of these, Factor 4, aligns substantively with the Classroom Organization dimension described by
instrument developers; we continue to use this name to describe this cluster of items. The other,
Factor 1, includes the rest of the items from the CLASS. MQI items load substantively onto the same

Table 5. Exploratory Factor Analyses Loadings for a Three-Factor Solution.

Factor 1 Factor 2 Factor 3 Communalities

Eigenvalues 8.49 4.02 1.94
Cumulative % of variance explained 32.32 46.67 52.95
CLASS
Negative climate –0.578 –0.110 –0.003 0.343
Behavior management 0.597 0.141 0.045 0.360
Productivity 0.691 0.218 0.059 0.478
Positive climate 0.806 0.165 0.030 0.662
Teacher sensitivity 0.852 0.330 –0.016 0.730
Respect for student perspectives 0.761 0.343 0.062 0.592
Instructional learning formats 0.687 0.253 –0.035 0.475
Content understanding 0.832 0.289 0.082 0.696
Analysis and problem solving 0.711 0.459 0.052 0.570
Quality of feedback 0.812 0.329 0.059 0.667
Instructional dialogue 0.841 0.410 0.031 0.729
Student engagement 0.717 0.166 –0.001 0.522

MQI
Linking and connections 0.199 0.556 –0.190 0.314
Explanations 0.261 0.809 –0.236 0.657
Multiple methods 0.119 0.549 –0.151 0.307
Generalizations 0.209 0.394 –0.098 0.162
Mathematical language 0.352 0.363 –0.138 0.199
Remediation 0.167 0.609 –0.306 0.400
Teacher uses student productions 0.332 0.889 –0.184 0.792
Student explanations 0.236 0.808 –0.123 0.658
SMQR 0.254 0.701 –0.013 0.515
ETCA 0.296 0.839 –0.236 0.707
Major errors 0.011 –0.195 0.835 0.698
Language imprecisions 0.058 –0.172 0.509 0.267
Lack of clarity –0.005 –0.174 0.858 0.739

Note. Extraction method is Principal Axis Factoring. Rotation method is Oblimin with Kaiser Normalization. Cells are shaded to
identify instructional factors and potential cross-loadings (i.e., loadings on two factors of similar magnitude). CLASS = Classroom
Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical Questioning and
Reasoning; ETCA = Enacted Task Cognitive Activation.
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two factors described above (Factors 2 and 3). Although we explain 5% more variation compared to
a three-factor solution, for a total of 58%, the low communality values for Mathematical Language
and Generalizations persist. In addition, a number of items from the CLASS cross load onto both
Factors 1 and 4. As expected given these cross loadings, the two factors with items from the CLASS
are correlated more strongly (r = .51) than other combinations of factors (see Table 8). Of interest,
we find that the nine items that have their primary loading on Factor 1 in this four-factor solution
have stronger internal consistency reliability (0.96) than all 12 items from the CLASS (0.91), which
formed Factor 1 in the three-factor solution. The three items that appear to cluster together to form
Factor 4 (i.e., Classroom Organization) also have reasonable reliability (0.82), lending support to this
solution as a plausible factor structure.

The cross loadings from the EFA suggest that some shared variation may exist across instruments,
even though the suggested factors are largely within instrument. To explore this further, we proceed
to CFA to test whether extracting instrument-specific variation leads us to one of the two solutions
just described, or to another solution. We focus on a parsimonious set of models based both on
findings from the EFA and hypotheses just described. We present the structure of these theory-

Table 6. Exploratory Factor Analyses Loadings for a Four-Factor Solution.

Factor 1 Factor 2 Factor 3 Factor 4 Communalities

Eigenvalues 8.49 4.02 1.94 1.48
Cumulative % of variance explained 32.56 47.04 53.33 58.06
CLASS
Negative climate –0.459 –0.122 –0.005 –0.687 0.489
Behavior management 0.428 0.163 0.067 0.930 0.876
Productivity 0.572 0.232 0.065 0.772 0.646
Positive climate 0.803 0.151 0.005 0.504 0.679
Teacher sensitivity 0.815 0.325 –0.034 0.611 0.719
Respect for student perspectives 0.850 0.320 0.031 0.302 0.747
Instructional learning formats 0.656 0.249 –0.050 0.492 0.468
Content understanding 0.819 0.279 0.060 0.544 0.693
Analysis and problem solving 0.784 0.443 0.025 0.292 0.664
Quality of feedback 0.851 0.311 0.030 0.426 0.725
Instructional dialogue 0.896 0.392 0.000 0.416 0.811
Student engagement 0.650 0.167 –0.011 0.606 0.528

MQI
Linking and connections 0.212 0.557 –0.194 0.101 0.314
Explanations 0.267 0.816 –0.238 0.158 0.671
Multiple methods 0.162 0.546 –0.157 –0.021 0.309
Generalizations 0.198 0.398 –0.099 0.160 0.169
Mathematical language 0.309 0.370 –0.140 0.325 0.221
Remediation 0.181 0.611 –0.308 0.075 0.401
Teacher uses student productions 0.359 0.889 –0.191 0.155 0.792
Student explanations 0.273 0.806 –0.129 0.070 0.656
SMQR 0.277 0.701 –0.018 0.114 0.516
ETCA 0.316 0.841 –0.241 0.148 0.710
Major errors 0.018 –0.199 0.835 0.005 0.697
Language imprecisions 0.042 –0.171 0.513 0.084 0.273
Lack of clarity 0.006 –0.177 0.860 –0.013 0.742

Note. Extraction method is Principal Axis Factoring. Rotation method is Oblimin with Kaiser Normalization. Cells are shaded to
identify instructional factors and potential cross-loadings (i.e., loadings on two factors of similar magnitude). CLASS = Classroom
Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical Questioning and
Reasoning; ETCA = Enacted Task Cognitive Activation.

Table 7. Correlations Among the Three Factors Emerging from the Exploratory Factor Analysis.

Factor 1 Factor 2 Factor 3

Factor 1 1.00
Factor 2 0.33 1.00
Factor 3 0.03 –0.23 1.00
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driven models in Tables 9 and 10, which document nonbifactor and bifactor models, respectively.
The nonbifactor models provide a basis for comparison with the more complex, bifactor models.
Models 1 through 4 are nonbifactor models. Models 3 and 4 correspond to the three- and four-factor
solutions from the EFA analyses, with items restricted to load only on their primary factors from the
EFA. As in the EFA, all items were specified to cluster within instrument. We also ran models with
just one instructional factor (Model 1) and two factors comprising items from each instrument
(Model 2) in order to examine whether the suggested models that emerged from the EFA had better
fit as compared to that of more parsimonious models. This is a common practice when running CFA
(R. B. Kline, 2011).

Models 5 through 8 are bifactor models, each with two instrument factors (CLASS and MQI) that
attempt to extract instrument-specific variation, as well as varying numbers of instructional factors,
including cross-instrument factors. We specified models with no more than three instructional factors
because the EFA suggested no more than four instructional factors, and we hypothesized that extraction of
instrument-specific variation would allow items to cluster across instruments to form fewer instructional
factors. Model 5 includes two instrument factors and just one instructional factor. Based on theory and
results from the EFA, we did not expect findings to point to just one instructional factor; however, similar to
earlier in this article, we specified this model anyway as a comparison to more complex models. Models 6

Table 9. Confirmatory Factor Analysis Model Organization for Nonbifactor Models.

Items Model 1 Model 2 Model 3 Model 4

CLASS
Negative climate Factor 1 Factor 1 Factor 1 Factor 1
Behavior management Factor 1 Factor 1 Factor 1 Factor 1
Productivity Factor 1 Factor 1 Factor 1 Factor 1
Positive climate Factor 1 Factor 1 Factor 1 Factor 2
Teacher sensitivity Factor 1 Factor 1 Factor 1 Factor 2
Respect for student perspectives Factor 1 Factor 1 Factor 1 Factor 2
Instructional learning formats Factor 1 Factor 1 Factor 1 Factor 2
Content understanding Factor 1 Factor 1 Factor 1 Factor 2
Analysis and problem solving Factor 1 Factor 1 Factor 1 Factor 2
Quality of feedback Factor 1 Factor 1 Factor 1 Factor 2
Instructional dialogue Factor 1 Factor 1 Factor 1 Factor 2
Student engagement Factor 1 Factor 1 Factor 1 Factor 2

MQI
Linking and connections Factor 1 Factor 2 Factor 2 Factor 3
Explanations Factor 1 Factor 2 Factor 2 Factor 3
Multiple methods Factor 1 Factor 2 Factor 2 Factor 3
Generalizations Factor 1 Factor 2 Factor 2 Factor 3
Mathematical language Factor 1 Factor 2 Factor 2 Factor 3
Remediation Factor 1 Factor 2 Factor 2 Factor 3
Teacher uses student productions Factor 1 Factor 2 Factor 2 Factor 3
Student explanations Factor 1 Factor 2 Factor 2 Factor 3
SMQR Factor 1 Factor 2 Factor 2 Factor 3
ETCA Factor 1 Factor 2 Factor 2 Factor 3
Major errors Factor 1 Factor 2 Factor 3 Factor 4
Language imprecisions Factor 1 Factor 2 Factor 3 Factor 4
Lack of clarity Factor 1 Factor 2 Factor 3 Factor 4

No. of factors 1 2 3 4

Note. CLASS = Classroom Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical
Questioning and Reasoning; ETCA = Enacted Task Cognitive Activation.

Table 8. Correlations Among the Four Factors Emerging from the Exploratory Factor Analysis.

Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 1.00
Factor 2 0.35 1.00
Factor 3 0.02 –0.24 1.00
Factor 4 0.51 0.15 0.01 1.00
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and 7 each have two instructional factors, one that overlaps substantially with the single instructional factor
in Model 5 and another from the CLASS or from the MQI that the correlational analyses and EFA results
suggested were important (i.e., Errors and Imprecisions from the MQI in Model 6 and Classroom
Organization from the CLASS in Model 7). Finally, Model 8 includes both of these latter instructional
factors, Errors and Imprecisions and Classroom Organization; a third instructional factor includes the rest
of the items from both the CLASS and MQI instruments. Bifactor models such as Model 8 allow us to test
the hypothesis that these sorts of instructional components from the CLASS and MQI might be correlated
but would not cluster onto the same factor. We hypothesized that the MQI would capture additional
variability in teachers’ use of student ideas in mathematics instruction than could be captured by a general
instrument such as the CLASS. If our hypothesis holds, Model 8 should not be a better fit to the data than a
model structure such as Model 4, where related CLASS and MQI items load onto separate factors.

In Table 11, we present standard fit statistics (chi-square) and fit indices (root mean square error
of approximation, comparative fit index, standardized root mean square residual, Akaike informa-
tion criterion [AIC], and Bayesian information criterion [BIC]) for each of these models using robust
maximum likelihood estimation to account for the non-normality of some items (Sivo, Fan, Witta, &
Willse, 2006). Although the fit of nested models normally can be compared using a chi-square-
difference test, it is not appropriate here given that our base model has a significant chi-square at the
nominal .05 alpha level (Yuan & Bentler, 2004). Further, these models do not meet expected
guidelines of fit indices: less than 0.06 for root mean square error of approximation, greater than
0.95 for comparative fit index, and less than 0.08 for standardized root mean square residual (Hu &
Bentler, 1999). We instead rely on AIC and BIC indices when identifying models with the best fit,
looking for those models with the smallest AIC and BIC indices.

Table 10. Confirmatory Factor Analysis Model Organization for Bifactor Models.

Items Model 5 Model 6 Model 7 Model 8

CLASS
Negative climate Factor 1 Factor 1 Factor 1 Factor 1
Behavior management Factor 1 Factor 1 Factor 1 Factor 1
Productivity Factor 1 Factor 1 Factor 1 Factor 1
Positive climate Factor 1 Factor 1 Factor 2 Factor 2
Teacher sensitivity Factor 1 Factor 1 Factor 2 Factor 2
Respect for student perspectives Factor 1 Factor 1 Factor 2 Factor 2
Instructional learning formats Factor 1 Factor 1 Factor 2 Factor 2
Content understanding Factor 1 Factor 1 Factor 2 Factor 2
Analysis and problem solving Factor 1 Factor 1 Factor 2 Factor 2
Quality of feedback Factor 1 Factor 1 Factor 2 Factor 2
Instructional dialogue Factor 1 Factor 1 Factor 2 Factor 2
Student engagement Factor 1 Factor 1 Factor 2 Factor 2

MQI
Linking and connections Factor 1 Factor 1 Factor 2 Factor 2
Explanations Factor 1 Factor 1 Factor 2 Factor 2
Multiple methods Factor 1 Factor 1 Factor 2 Factor 2
Generalizations Factor 1 Factor 1 Factor 2 Factor 2
Mathematical language Factor 1 Factor 1 Factor 2 Factor 2
Remediation Factor 1 Factor 1 Factor 2 Factor 2
Teacher uses student productions Factor 1 Factor 1 Factor 2 Factor 2
Student explanations Factor 1 Factor 1 Factor 2 Factor 2
SMQR Factor 1 Factor 1 Factor 2 Factor 2
ETCA Factor 1 Factor 1 Factor 2 Factor 2
Major errors Factor 1 Factor 2 Factor 2 Factor 3
Language imprecisions Factor 1 Factor 2 Factor 2 Factor 3
Lack of clarity Factor 1 Factor 2 Factor 2 Factor 3

No. of factors 3 4 4 5

Note. All models also include two instrument factors with all items cross loading onto their respective instrument factors. CLASS =
Classroom Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical Questioning
and Reasoning; ETCA = Enacted Task Cognitive Activation.
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Several factors could explain our lack of adequate model fit, including the possibility of failing to
model all of the sources of variation in our data, collecting noisy data, or using a moderately sized
sample. This misfit implies that we should interpret the structure and meaning of our teacher-level
factors with caution. We interpret the identified factors tentatively as corresponding to the con-
structs they were theoretically derived from while remaining realistic that they likely capture some
variation that is unrelated to the construct of interest.

Model fit comparisons indicate that both general and content-specific dimensions are needed to
describe variation across teachers. Of the nonbifactor models, Model 4, which includes four total
factors without any overlap across instruments, appears to have the best fit according to the AIC and
BIC statistics. Similarly, for bifactor models, Model 8, which has three total factors in addition to the
two instrument factors, has the best fit. In both Models 4 and 8, Errors and Imprecisions and
Classroom Organization form their own factors, even though this was not true in the three-factor
solution from the EFA. In that analysis, we found that all items from the CLASS instrument
clustered together to form a single factor. This finding about Errors and Imprecisions and
Classroom Organization aligns with one of our hypotheses and highlights at least one area in
which a general instrument such as the CLASS may be limited in its ability to capture some
“pure” content-specific elements of instruction.

There also are important differences between Model 4 and Model 8, namely, that the latter allows
items from the CLASS and the MQI to cluster onto the same factor, whereas the former does not.
Unlike before, when aiming to determine which of these structures has a better fit to our data, we are
not able to compare fit indices. This is because we expect the AIC and BIC indices to be lower in the
bifactor model than in the nonbifactor models with similar numbers of instructional factors, given
that the former includes two instrument-specific factors intended to capture more of the variability
in our data than could be captured by nonbifactor models.

Therefore, we examine factor loadings from these two models to determine which has stronger
substantive backing (see Table 12 for loadings from Model 4 and Table 13 for loadings from Model
8). Similar to the results from the EFA, we find substantive support for Model 4, where items have
statistically significant loadings on their respective factors, generally above 0.40. Two item loadings
for Generalizations and Mathematical Language fall just below this threshold; we observed similar
issues in the EFA. Factor loadings in Model 8 are less clean. We hypothesized that variation in a
particular item should be accounted for both by an instrument factor and by the content of the item.
This is true for the Classroom Organization factor, where all three items have loadings on both the
instrument and the instructional factor above 0.40. Four items from the MQI specified to load on the
common factor with items from the CLASS: Teacher Uses Student Productions, Student
Explanations, Student Mathematical Questioning and Reasoning, and Enacted Task Cognitive

Table 11. Model Fit Indices for Confirmatory Factor Analysis Models.

Single Factor—No Cross Loadings
Bifactor—Items Load Onto Their Respective

Instruments, Plus Other Factors

Fit Indices Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

No. of factors 1 2 3 4 3 4 4 5
No. of parameters 75 76 78 81 101 102 102 104
Akaike (AIC) –1639.91 –3128.08 –3499.79 –3795.80 –3570.68 –4000.36 –3886.38 –4059.54
Bayesian (BIC) –1342.45 –2826.65 –3190.43 –3474.54 –3170.10 –3595.81 –3481.83 –3647.061
χ2 statistic 3114.10 1912.41 1642.76 1399.24 1542.98 1199.75 1295.26 1169.95
χ2 df 275 274 272 269 249 248 248 246
χ2 test of model fit 0 0 0 0 0 0 0 0
Root mean square error
of approximation

0.163 0.124 0.114 0.104 0.115 0.099 0.104 0.098

Comparative fit index 0.484 0.702 0.751 0.795 0.765 0.827 0.810 0.832
Standardized root mean
square residual

0.156 0.093 0.077 0.070 0.070 0.055 0.067 0.065
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Activation—also meet this condition. However, all three items from Errors and Imprecisions load
only onto the instructional factor at this threshold; loadings on the instrument factor are below 0.40,
even though they are statistically significant. Conversely, for the rest of the items from the CLASS
and MQI specified to load onto the common instructional factor, almost all of the variation loads
onto the instrument factor. For example, Linking and Connections has a strong loading of 0.57 on
the MQI instrument factor but a nonsignificant loading of 0.14 on the instructional factor. Items
from the CLASS specified to load on this same instructional factor have loadings no higher than
0.35. One reason for this may be that there is a large degree of overlap of items between this
instructional factor and the two instrument factors; that is, we specify that all but three CLASS items
and all but three MQI items load onto the common instructional factor. Another explanation is that
our sample size is small relative to recommended guidelines for stable parameter estimates. The rule
of thumb is to have five to 10 observations per parameter estimated (R. B. Kline, 2011), yet we have
only 390 observations for approximately 100 parameters.

Even when we look beyond these measurement challenges, we find suggestive evidence that
Model 4 offers a better solution than Model 8. In Model 8, two items from CLASS—Positive
Climate and Content Understanding—and five items from the MQI—Linking and Connections,
Explanations, Generalizations, Language, and Remediation—have nonsignificant loadings below
0.20. One interpretation of these loadings is that most of the variance for these items is captured
by the instrument factor. Of interest, though, five of these six items (excluding Positive Climate)
are rooted in a content-specific view of instruction. Therefore, it is possible that these items
might form a separate cross-instrument factor. We did not explore this as a possible factor
structure, as this would lead us to the same general conclusion as Model 4, with two mathe-
matics-specific factors and two general factors. As we hypothesized earlier, these patterns suggest
that there are subtleties in a content-specific instrument such as the MQI that capture additional

Table 12. Standardized Factor Loadings for CFA Model 4.

Items Factor 1 Factor 2 Factor 3 Factor 4

CLASS
Negative climate 0.699***
Behavior management –0.841***
Productivity –0.883***
Positive climate 0.797***
Teacher sensitivity 0.823***
Respect for student perspectives 0.821***
Instructional learning formats 0.673***
Content understanding 0.831***
Analysis and problem solving 0.780***
Quality of feedback 0.856***
Instructional dialogue 0.886***
Student engagement 0.671***

MQI
Linking and connections 0.524***
Explanations 0.759***
Multiple methods 0.523***
Generalizations 0.389***
Mathematical language 0.368***
Remediation 0.575***
Teacher uses student productions 0.909***
Student explanations 0.836***
SMQR 0.746***
ETCA 0.848***
Major errors 0.834***
Language imprecisions 0.508***
Lack of clarity 0.876***

Note. CLASS = Classroom Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical
Questioning and Reasoning; ETCA = Enacted Task Cognitive Activation.

***p < .001.
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variability in teachers’ interactions with students around that content than are captured by a
more general instrument such as the CLASS.

That said, there does appear to be some overlap between instructional components of the CLASS
and MQI instruments that differs from our stated hypotheses. This is most evident for items related
to students’ cognitive engagement in class and the content. In Model 8, four items from the MQI—
Teacher Uses Student Productions, Student Explanations, Student Mathematical Questioning and
Reasoning, and Enacted Task Cognitive Activation—load onto the factor that we specified to include
items from both instruments. If we consider a slightly lower threshold for factor loadings around
0.30, then three related items from the CLASS instrument—Respect for Student Perspectives,
Analysis and Problem Solving, and Instructional Dialogue—also appear to load onto this same
instructional factor. Thus, a general instrument may be able to capture some of the same variability
in teachers’ instruction as a content-specific instrument.

Discussion and conclusion

Results from this study identify only a small degree of overlap between a general and a content-
specific instrument when used to examine upper-elementary teachers’ mathematics instruction.
Although we find some overlap between elements of instruction captured by the CLASS and MQI
instruments in Model 8 of the CFA, we also find strong evidence for factors that are distinct to each.
At the extreme, Errors and Imprecisions is content specific and Classroom Organization is more
general. We also find distinctions between a general instrument and a content-specific one even
among items that ask about teachers’ interactions with students and the extent to which these
interactions develop intellectual challenge, as observed in Model 4 from the CFA. Aligned with older

Table 13. Standardized Factor Loadings for Confirmatory Factor Analysis Model 8.

Instrument Factors Instructional Factors

Items CLASS MQI Factor 1 Factor 2 Factor 3

CLASS
Negative climate –0.493*** –0.486***
Behavior management 0.451*** 0.836***
Productivity 0.619*** 0.559***
Positive climate 0.808*** 0.100†

Teacher sensitivity 0.795*** 0.201**
Respect for student perspectives 0.756*** 0.333***
Instructional learning formats 0.615*** 0.266***
Content understanding 0.855*** 0.078
Analysis and problem solving 0.719*** 0.326***
Quality of feedback 0.849*** 0.180**
Instructional dialogue 0.820*** 0.348***
Student engagement 0.619*** 0.237**

MQI
Linking and connections 0.573*** 0.137
Explanations 0.903*** 0.133
Multiple methods 0.486*** 0.245†

Generalizations 0.428*** 0.084
Mathematical language 0.382*** 0.113
Remediation 0.704*** 0.050
Teacher uses student productions 0.604** 0.722***
Student explanations 0.617*** 0.578**
SMQR 0.432* 0.654***
ETCA 0.636** 0.535*
Major errors –0.238*** –0.788***
Language imprecisions –0.166** –0.477***
Lack of clarity –0.197** –0.870***

Note. CLASS = Classroom Assessment Scoring System; MQI = Mathematical Quality of Instruction; SMQR = Student Mathematical
Questioning and Reasoning; ETCA = Enacted Task Cognitive Activation.

†p < .10. *p < .05. **p < .01. ***p < .001.
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(Brophy, 1986) and more recent (Grossman & MacDonald, 2008; Hamre et al., 2013) work, these
findings provide empirical support for the argument that, when studying complex phenomena such
as that of teaching, we need to take both types of perspectives—a general and a content-specific
viewpoint—into consideration if we are to better understand and capture the quality of instruction
experienced by students in the classroom (see Charalambous & Kyriakides, 2017, for a related
discussion).

These general conclusions also align with related empirical work using classroom data scored on
multiple observation instruments. Lockwood et al. (2015) identified two distinct teaching factors, one
focused on instructional practice and another focused on classroom management. In the MET study,
researchers found similar substantive factors within instruments and very little overlap between
instruments (Kane & Staiger, 2012; McClellan et al., 2013). At the same time, we also note areas of
disagreement. Our analyses demonstrate support for between three and four instructional factors to
describe variation across teachers, slightly more than the number identified by Lockwood et al. (2015)
and far fewer than the number identified by McClellan et al. (2013). One reason for this latter
difference likely is the fact that the MET data included scores from five observation instruments,
whereas ours include scores from two. It is possible that we might find more factors if we were to score
the same instruction on additional instruments. Another plausible reason for these discrepancies
might be due to the models tested in each study. Our work used bifactor models that have the potential
to account for any instrument-related variance, thus reducing the number of unique factors. Lockwood
et al. (2015) did not account for variance due to instruments but did find fewer factors when
accounting for other sources of construct-irrelevant variation (i.e., segments, lessons, and raters). Of
course, it is possible that analyses that simultaneously account for all possible sources of variation—
that is, raters, segments, lessons, instruments, and teachers—may come to slightly different conclu-
sions. The fact that we are not able to do so is a limitation of this study.

We believe that our findings have important implications for the development and refinement of
the two observational instruments, as well as for policy and practice. First, we note that our final
factor structures do not align completely with those presented by instrument developers, thus
requiring additional consideration of the groups of teaching skills that these instruments capture.
Compared to four dimensions on the MQI instrument, we identify two; this is true both in Model 4
of the CFA and in Model 8, where one of these dimensions overlaps with items from the CLASS. The
first of these factors, Errors and Imprecisions, is consistent with the original instrument. The second
factor looks a lot like what many have described as “ambitious instruction” (Cohen, 2011; Lampert,
2001), referring to instruction that is “intellectually ambitious, uncertain, and contested” (Cohen &
Ball, 1999, p. 6). Thus, we call the second factor Ambitious Mathematics Instruction, capturing the
depth of the mathematics provided to students, the quality of teachers’ interactions with students
around this content, and opportunities for students to derive meaning about mathematical ideas.
Compared to three dimensions on the original CLASS instrument, our empirical evidence points to
two: Classroom Organization and a separate factor that appears to capture teachers’ support—both
instructional and emotional—for students in the classroom. These results are similar to other two-
factor solutions identified in studies that also used bifactor or hierarchical CFA (Hamre et al., 2013;
McCaffrey et al., 2015) but differ from other analyses that identify three factors (Hafen et al., 2015;
Hamre et al., 2013). In light of the substantial work already conducted to date on the CLASS
instrument, we leave further discussion about these differences and possible names for factors that
emerge from a more parsimonious structure up to developers of this instrument.

The multidimensional nature of instruction—including both general and content-specific practices
—requires evaluation systems that reflect this complex structure. Current discussion around teacher
evaluation often advocate for the use of “multiple measures” in a way that implies consensus around
the complexity of teaching. However, in practice, evaluation systems often assume a unidimensional or
simplified criterion for evaluation (Rothstein & Mathis, 2013). One reason for this is the fact that
current processes generally evaluate teachers on just one observation instrument, thus likely masking
important variability within and across teachers. Similarly, both researchers and policymakers suggest
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creating a single weighted composite of teachers’ overall effectiveness by averaging across multiple
metrics (e.g., dimensions within a given observation instrument, value-added to student test scores,
student surveys; Center on Great Teachers and Leaders, 2013; Mihaly, McCaffrey, Staiger, &
Lockwood, 2013). We recognize that simplifying the evaluation process—both by using a single
observation instrument and by averaging across measures—lends itself to a systematized process for
making binary decisions such as whether to grant teachers tenure. At the same time, such an approach
cannot account for the full complexity of teachers’ skill and classroom practice. Take, for instance, the
case of a teacher who might do poorly in terms of establishing emotional rapport with her students but
does an outstanding job in terms of creating a mathematically rich learning environment for her
students. Or conversely, take a teacher who might perform extremely well in managing his classroom
but whose instruction is replete with major mathematical errors. Both teachers would earn an overall
score in the middle of the distribution of teacher effectiveness even though each is someone who might
be an appropriate target for (different forms of) professional development. If the goal of using
observation instruments is instructional improvement, which many argue it is (Hill & Grossman,
2013; Papay, 2012), then it is important to be able to provide teachers and school personnel with
distinct dimension-specific scores that lead to individualized support targeted at skills and areas where
they are lacking. Without this sort of information, evaluation scores may be useful only for generalized
one-size-fits-all professional development, which has not proven effective at increasing teachers’
instructional quality or student achievement (Hill, 2007; Yoon, Duncan, Lee, Scarloss, & Shapley,
2007), or for dismissal or promotion.

Finally, the results of this study also have practical implications for selecting and training raters to
score teachers’ instruction. Even though prior work highlights the ability of principals, peers, and
other school leaders to accurately identify teachers who are effective at raising student achievement
(Jacob & Lefgren, 2008; Rockoff & Speroni, 2010; Rockoff, Staiger, Kane, & Taylor, 2012), other work
indicates that specific types of instruction—particular in a content area—require raters attuned to
these elements. For example, Hill, Charalambous, Blazar, et al. (2012) show that raters who are
selectively recruited due to a background in mathematics or mathematics education and who
complete initial training and ongoing calibration score more accurately on the MQI than those
who are not selectively recruited. Therefore, calls to identify successful teachers through evaluations
that are “better, faster, and cheaper” (Gargani & Strong, 2014) may not prove useful across all
instructional dimensions. Instead, along with Good and Lavigne (2015), we are more supportive of a
“festina-lente” approach, in which intensive training helps raters to deeply understand the different
dimensions of a given observational instrument and to apply specific items accurately and knowl-
edgeably. This, in turn, raises concerns as to whether principals and school leaders have the capacity
and the expertise to appropriately evaluate content-related dimensions of instructional quality in
several subject matters, as is the case when supervising generalist primary school teachers.

That said, we are not dismissive of the central tension between the need for content-specific
observation and the logistics-related challenges of selecting such instruments, training observers, and
managing these systems. There is a range of possible ways to resolve this tension. One possibility
would be to deputize content-specific district staff to take over a portion of teacher evaluations. The
drawbacks of this proposal would be the mixing of professional developer and evaluator roles, which
some point to as a problematic feature in current teacher evaluation systems (Herman & Baker,
2009). The benefit might be enhanced ability for that staff to provide customized feedback to
teachers, a feature of successful coaching programs focused either on content-specific or general
instructional dimensions (Allen, Pianta, Gregory, Mikami, & Lun, 2011; Blazar & Kraft, 2015; P. F.
Campbell & Malkus, 2011), and potentially increased coordination between teachers’ needs and
available professional development. A second possibility would be to overlay content-specific
instructional guidance onto content-generic observation instruments, essentially providing both
verbiage and observer training that would allow for a more nuanced understanding of what
instructional activities like asking high-level questions, for instance, looks like in mathematics
classrooms. Observers could be trained in both the general instrument and the subject matter
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areas, thus aligning sources of instructional guidance and increasing the specificity of guidance to
teachers. A third possibility may be to identify which of the dimensions of teaching practice are most
predictive of student outcomes that we care about, and to focus on a parsimonious set of skills. This
sort of predictive validity evidence has been important for advocates of value-added measures of
teacher effectiveness that estimate the contribution of teachers to student outcomes (Chetty,
Friedman, & Rockoff, 2014). However, Rothstein and Mathis (2013) pointed out that different
student outcomes may be predicted by different combinations of teaching practices, which is
borne out in several studies (Blazar & Kraft, 2017; Downer, Rimm-Kaufman, & Pianta, 2007;
Hamre & Pianta, 2001; Luckner & Pianta, 2011). These findings make this approach less tractable
than one where multiple teaching skills are taken into account.

Understanding and better measuring instructional quality is a particularly complex yet necessary
endeavor. Although our results suggest that no fast and cheap solutions seem to exist, successfully
undertaking this task appears necessary for improving instructional quality in the years to come.
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