# Leveraging ideas from adaptive testing to adaptive learning

The HERA showcase

Meirav Arieli-Attali Alina von Davier ACTNext, by ACT MARC, 2019

#### **Outline of the talk**

- Introduction
  - Adaptive Testing
  - Adaptive Learning
- Ideas from adaptive testing and formative assessment
  - Adaptation by difficulty
  - Self-adaptation
  - Multi-stage Adaptivity
  - Assessing partial knowledge; hints & feedback
  - Learning progressions and diagnostic tests
  - Development framework: Evidence Centered Design
- Application: design of the HERA system (+demo if time allows)
- Findings from early pilot



### **Adaptive Testing: Intentions & Outcomes**

- Goal: improve measurement
  - Increase reliability (reduce measurement error)
  - shorten tests
  - Maximize test information
  - Statistical models: primarily IRT
- Outcome: assign question at the ability level of test taker
  - Usually test takers will get items that they have a probability of 50% to answer them correctly
  - Usually, item selection is defined item-by-item
  - Item selection is by difficulty
  - → Similar experience for all individuals (in terms of relative test difficulty)
  - $\rightarrow$  high performing test takers are not bored, low performing are less frustrated



# **Adaptive Learning**

- Tutoring systems
  - Adaptivity by content/skill
  - Rule-based or algorithm-based
    - Within task (step loop) vs. between tasks (task loop)
  - Mastery-model for knowledge
  - Provide feedback on correctness
  - May provide hints
  - Statistical models: mainly Bayesian Knowledge Tracing (BKT)



# Ideas from Adaptive Testing and Formative Assessment

- Why and how ideas from assessment can leverage learning?
- Rigor methods for ensuring validity
  - Adaptation by difficulty; assessing ability on-the-fly
  - Self-adaptation research findings
  - Multi-stage Adaptivity
  - Assessing partial knowledge; hints & feedback
  - Learning progressions and diagnostic tests
  - Development framework: Evidence Centered Design



# Adaptation by difficulty; Assessing ability onthe-fly

- In contrast to adaptive learning (usually by content/skills)
- Ability assessed on-the-fly → ability measure reliable and valid
- Valid & stable measures of item difficulty (not just expert evaluation)
- Can be flexible change the window of input to estimate ability (to allow measure of change/learning)
- Based on psychometric models (IRT; CDM); can also adopt Elo and Urning models / mathematically also linked to BKT (Deonovic et al., 2019)
- → can combine adaption by difficulty & skill (CDM)



# Self-adaptation – Research Findings

- Giving test takers choice to choose the difficulty (Arieli-Attali, 2016; Rocklin & O'Donnell, 1987; Wise et al., 1992)
  - Test takers overall choose level of difficulty that corresponds to their ability level
  - Test takers overall choose difficulty of 65%-75% probability correct (CAT algorithm often selects items at 50% difficulty)
- If test takers are rewarded for difficulty of items they tend to challenge themselves more



## **Multi-stage Adaptivity**

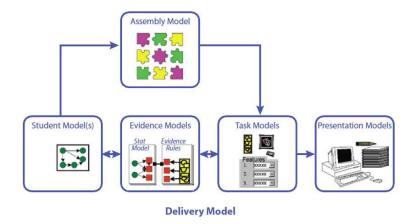
- Instead of selecting item-by-item, can select a group of items (testlets) adaptively
- Content balanced
- Information Targeted at Cut versus at Ability
- Influence of Multiple Cut Scores
- Tree-based multistage adaptive



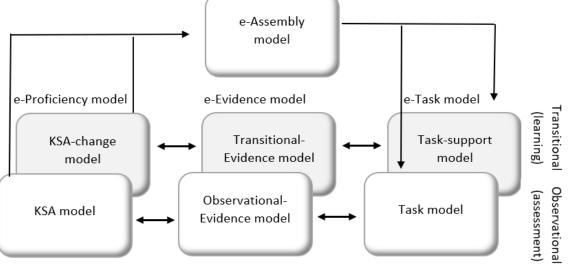
### Assessing partial knowledge; hints & feedback

- Assessing partial knowledge (Ben Simon & Budescu, 1997)
- Assessing knowledge when feedback and multiple attempts are provided (Attali & Powers, 2010; Attali, 2011)
- Assessing knowledge/ability when hint is used (Bolsinova et al., 2019)




## Learning progressions and diagnostic tests

- Designing task models based on a map of skills that reflects progression → student model
- Diagnostic models → statistical models to diagnose where students are




# Development framework: Evidence Centered Design

: A Schematic Representation of the Models in the ECD Framework (Mislevy et al., 2006)



→ Expanded framework

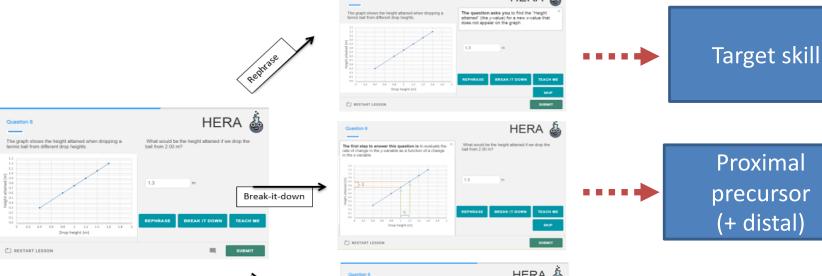


# THE HERA SHOWCASE



#### **Meet HERA!**

#### **An Adaptive**


- Holistic
- Educational
- Resources and
- Assessment System

#### for Science

- --Research-based prototype
- --Bridging assessment & learning
- --Using science simulations as context
- --Adaptive scaffolding (self-adaptive help options)
- --Adaptive sequencing



# Task model from HERA An item with scaffolds after incorrect response









### The HERA pilot

May-Aug 2018


- Collaboration between ACT, ACTNext, Smart Sparrow & PhET
- Pre-pilot in May 2018 to examine functionality
- Large pilot in Aug 2018 to examine learning-supports usage
  - Participants:
    - 2,775 Amazon Mechanical Turk; in 10 conditions; each participant completed 3 lessons
  - Materials:
    - Six lessons (Physics; Chemistry; Biology) Four lessons include simulations as preview (two sims from PhET); Each lesson includes 10 items with learning supports
  - Conditions:
    - Examine different ways to offer learning supports: (1) before response or after; (2) with or without cost; and (3) with different cost systems

\*Lessons topics: Restitution, Specific Heat, Hooke's Law, Beer's Law, Hinges, Self-pollination



## Item with Learning Supports





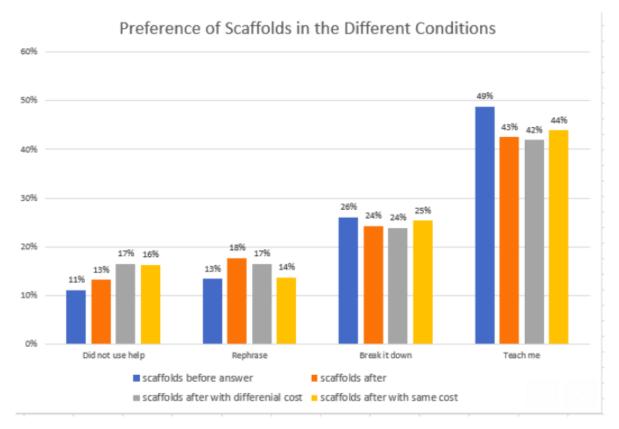
Learners can choose between three learning supports:

- 1 Rephrase the question
- 2 Break-down the question to steps
- 3 Teach me the content by solved example or full explanation

Differential cost was:

Rephrase = 1 beaker

Break-it-down = 2 beakers


Teach me = 3 beakers

Equal cost:

2 beakers per support



## Learners Preference of Learning Supports



#### Trends:

- •Overall, learners prefer "Teach me" (on average 45%), over "Break-it-down" (on average 25%) and "Rephrase" (on average 15%).
- •When scaffolds are offered **before** answer learners are using more help, particularly more "Teach me" but less "Rephrase".
- •When scaffolds are offered at a **cost** students use less help (by about 3%- 4% compared to no cost).
- •When the cost is *differential* as 1-2-3, there is almost no change in the distribution compared to no cost; equal cost of 2-2-2 increases the use of "Teach me" in the expense of "Rephrase"



# **Summary**

- We implemented ideas from CAT, MST and Self-Adapted tests; adaptivity by difficulty, content & student choice
- Adaptivity by units based on multistage adaptive and balancing content
- Based on progression of skills and student maps (student model)
- Based on statistical models when using hints, feedback, & multiple attempts



# **Next steps**

- Based on pilot with adults → developing a prototype with more content
- Will pilot with middle school students in 2020



Thank you

<u>meirav.attali@act.org</u>

<u>alina.vonDavier@act.org</u>