Using Assessment System Data to Generate Individualized Learning Materials for Students

What We Learned from Developing the iDAP

Alex Brodersen & Ying Cheng LAMBS lab, Department of Psychology University of Notre Dame

A presentation at the 19th MARC conference, Nov. 7, 2019

Overview

- Background
 - AP-CAT
 - iDAP
- 2 Lessons learned
 - Teacher Access & Teacher Engagement
 - Plan for Heterogeneity
 - Toolchain
 - Quality Control
 - Process Data
- 3 Future
 - Learning Modules

Background

AP-CAT

- Full Name: "Cognitive Diagnostic Computerized Adaptive Testing (CD-CAT) for AP Statistics"
- A five-year CAREER project funded by the National Science Foundation
- Two major components
 - Research
 - Educational outreach

Development

Item Bank Web Platform

Refinement

Mobile
Diagnostic Score Report
Pilot Data

RCT

Feedback Types Learning Outcomes

2016

2017

2018

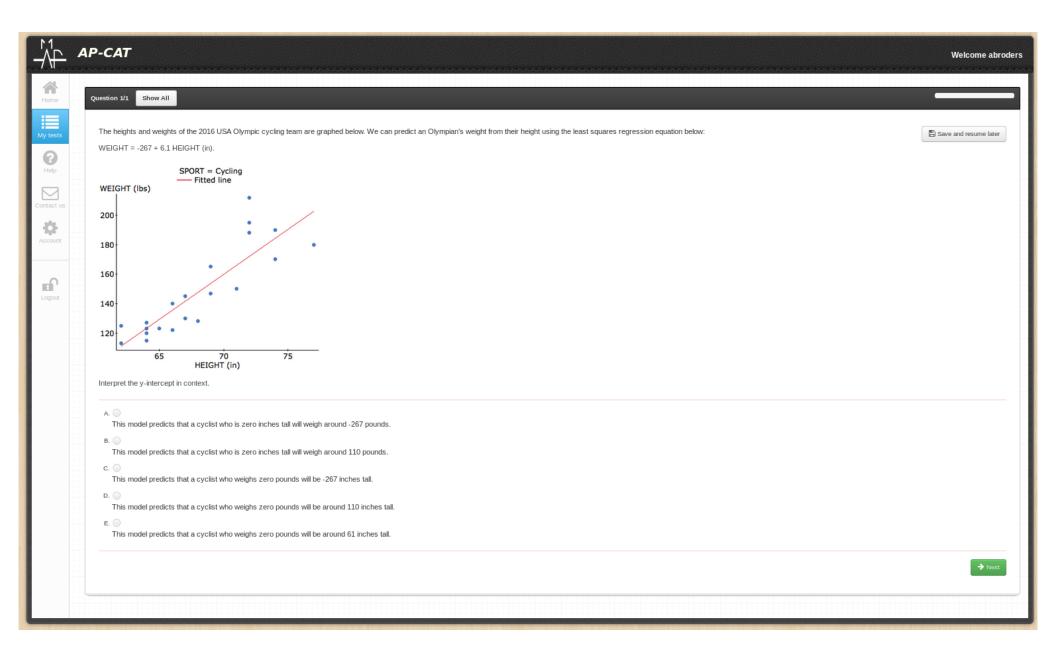
2019

Testing

Bugs UX/UI Item Keys

Observation

Engagement Survey Item Calibration Adaptive Testing


Item Bank

- **▶** 850 items
 - 4 sections
 - 16 main topics
 - 158 attributes

All Questions

#	Question	Creator	Туре	Status	Attributes	Time Created	Operation
1	Temperature Boxplot Median Qid: 1	Alison_Cheng	Multiple Choice	Updated	Statistics - 1.C.1.	Jul 28, 2014 - 10:48 p.m.	Review Edit Delete
2	Temperature Boxplot Percentile Qid: 2	Alison_Cheng	Multiple Choice	Approved	Statistics - 1.B.17.	Jul 29, 2014 - 10:11 a.m.	Review Edit Delete
3	Temperature Summary Outlier 1 Qid: 3	Alison_Cheng	Blank Field	Updated	Statistics - 1.B.5.	Jul 29, 2014 - 10:14 a.m.	Review Edit Delete
4	Temperature Summary Outlier 2 Qid: 4	Alison_Cheng	Blank Field	Updated	Statistics - 1.B.5.	Jul 29, 2014 - 10:16 a.m.	Review Edit Delete
5	Empirical Rule Area Qid: 5	Alison_Cheng	Blank Field	Updated	Statistics - 3.C.1.	Jul 29, 2014 - 10:18 a.m.	Review Edit Delete
6	Donut Probability 1 Qid: 6	Alison_Cheng	Blank Field	Updated	Statistics - 1.B.10.	Jul 29, 2014 - 10:21 a.m.	Review Edit Delete
7	Donut Probability 2 Qid: 7	Alison_Cheng	Blank Field	Updated	Statistics - 3.A.4.	Jul 29, 2014 - 10:38 a.m.	Review Edit Delete

Assignmen	nt Group:
✓ A	lexMockClass
A	lexMockClass2
Is the order	r of questions random? 👩
Due Date:	11/06/2019
Due Time:	12:00 AM
Optional ta	g for special survey load: Default is empty
▼ 📵 🛅	Exploring Data
	Comparing distributions of univariate data (dotplots, back-to-back stemplots, parallel boxplots)
	✓ Comparing and interpreting centers
	Comparing and interpreting spreads
	Comparing and interpreting shapes
	Comparing and interpreting clusters/gaps
	Comparing and interpreting outliers
	Constructing and interpreting graphical displays of distributions of univariate data
▼ 📵	Exploring bivariate data
(Identifying shape, direction, strength of a Scatterplot
(Chrowing properties of a Correlation coefficient
	Interpreting coefficient of determination: R square
	Writing Least Squares Regression Line (LSRL) from computer output
	Obtaining LSRL from dataset
	Writing LSRL from summary statistics (using b1=r*(sy/sx) formula) (not likely)
	□ Interpreting slope
	□ Interpreting intercept
	Finding a predicted y-hat
	Finding a residual value
	Interpreting a residual
	Using residual plot to determine if transformation is needed, i.e., is linear model appropriate
	Understanding lower reliability in extrapolation
	ldentifying influential points and their impact on model (leverage)
	ldentifying correct re-expression (log, power, exponential)
	Correctly calculating a predicted value under a transformation (log/power/exponential)
;	Exploring categorical data
	Summarizing distributions of univariate data
	Sampling and Experimentation
	Randomness, probability and simulation Statistical Inference

Scaffolding

- Step-by-step Solutions
 - Visible after assignment completion

0	Aerobics Class IQR Interpretation			The middle 50% of ages of aerobics participants has a range of 9.			The middle 25% of ages of the aerobics participants is between 23.5 and 28.5.	3 s					
In a ra	n a random sample of 24 people in an aerobics class, their ages are given as follows:												
21	38	32	29	27	27	46	18	24	23	30	31		
28	20	35	34	31	29	19	48	28	25	22	33		
	Explain what the interquartile range means for these data. • Fifty percent of the time, the age of an aerobics participant is between 23.5 and 32.5 years old.												
	• The interquartile range is the average range of the ages of participants in this aerobics class.												
	∘ The middle 25% of ages of the aerobics participants is between 23.5 and 28.5.												
	• The interquartile range is the participants' average distance away from the mean age.												

Standard Deviation

~

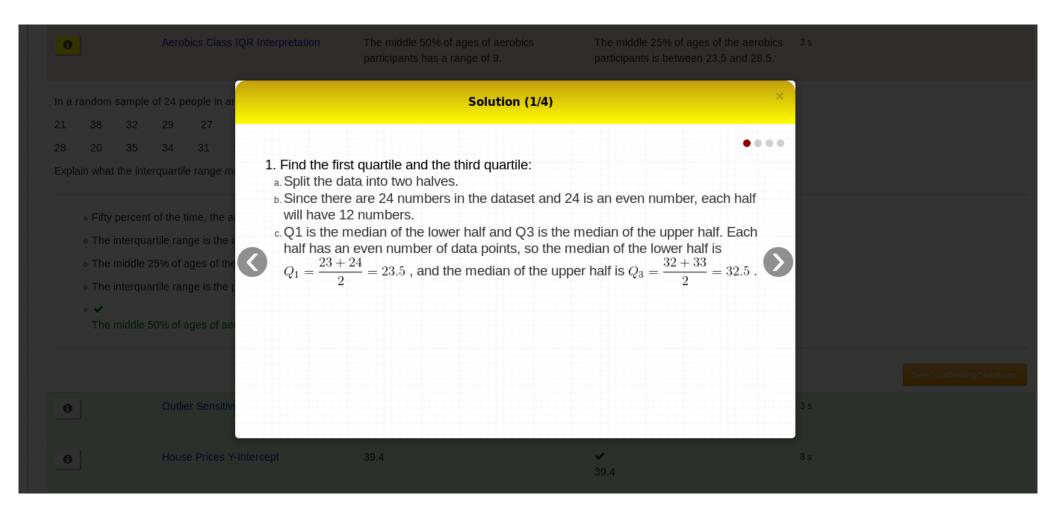
39.4

3 s

8 s

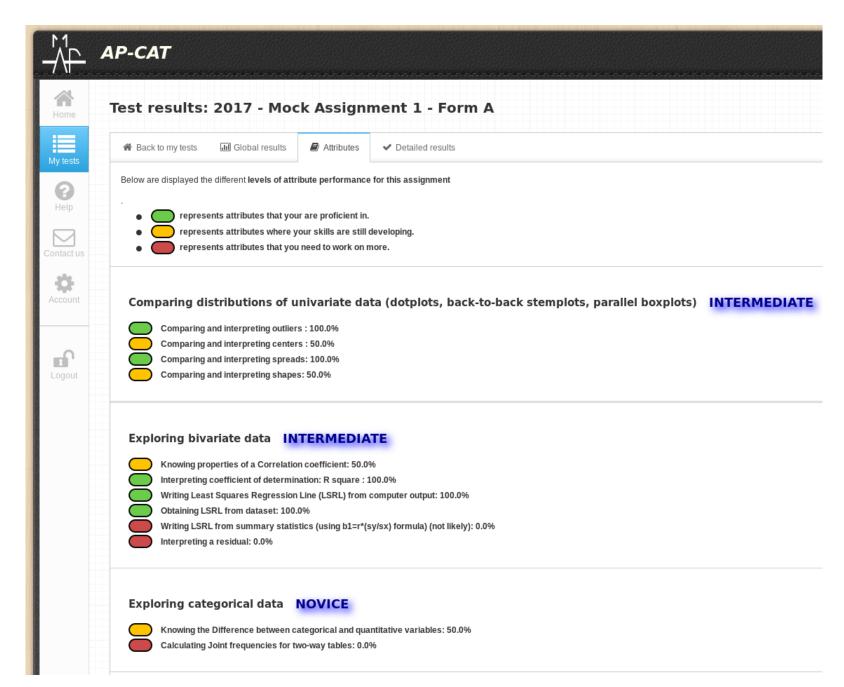
Background 11

Standard Deviation


39.4

0

0


Outlier Sensitivity

House Prices Y-Intercept

Feedback

- Granular feedback
 - Areas of opportunity

IDAP

- ► Intelligent Diagnostic Assessment Platform (i-DAP) for High School Statistics Education
 - GOAL: Develop a holistic, personalized, learning system integrated into the classroom

iDAP

- Leverage attribute system developed in the AP-CAT
 - Map to 36 common core state standards on "statistics and probability"

Lessons learned

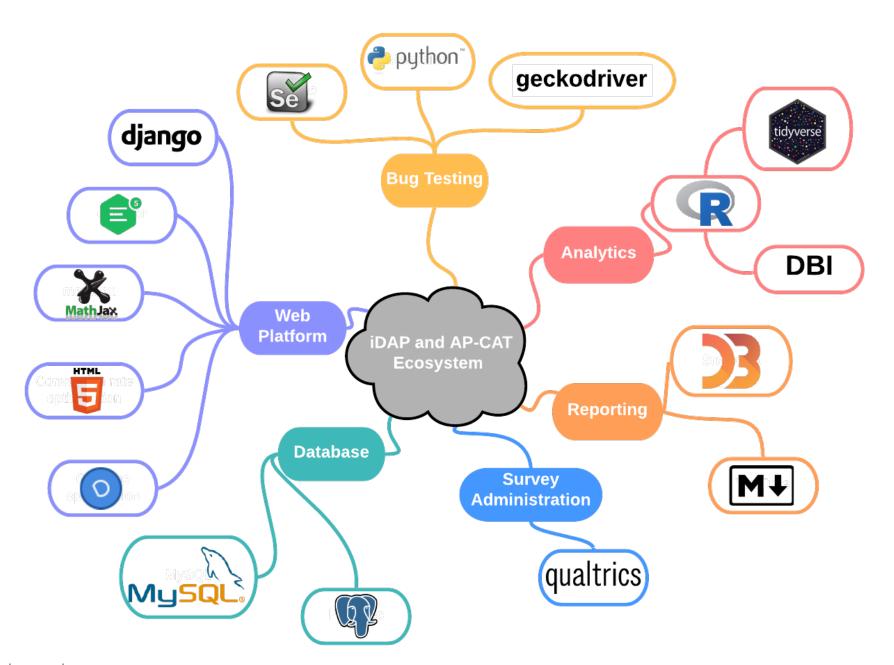
Lesson 1

Teacher Access & Teacher Engagement

Teacher Access & Teacher Engagement

- Teacher approval
 - delivery engine
 - reporting
 - feature requests
 - rollout of assignments
 - Example: In-Class Assignment Length

Lesson 2


- Plan for Heterogeneity
 - in learning environment
 - in students

Sample Heterogeneity

- Not surprising
 - learning outcomes depend on school
- Surprising
 - Student self-predictions of their final exam scores depend on school (Ober et al., In Prep)
 - Patterns of incorrect responses

Lesson 3

Choose your toolchain wisely


```
con <- DBI::dbConnect(RMySQL::MySQL(), ## Connect to DB
1
        host = "domain.name.edu",
2
        port = 3306,
3
        user = "db user",
4
        password = "db pw",
5
        dbname = "db_name")
6
7
   tbl(con, "activity") %>%
8
        filter(role == "student") %>% ## Only student data
9
        select(-firstname, -lastname, ## de-identify
10
        -role , -username ,
11
        -id, -meta)
12
13
```

Lesson 4

Have Quality Control and Contingency Plans

Lesson 4

- Not all data are worth being collected
- Not all data that have been collected are worth being analyzed

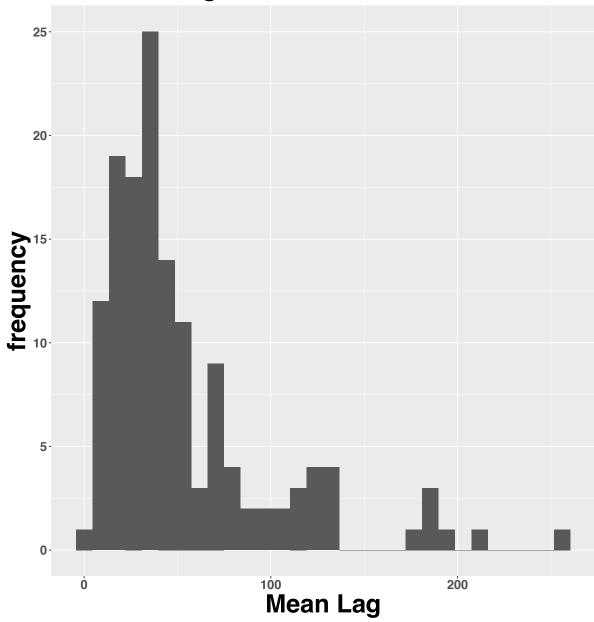
```
# Source:
           lazy query [?? x 4]
# Database: mysql 5.7.27-0ubuntu0.18.04.1
    [user@domain.name:/dname]
#
                  tabname
                                                            info
   url
                                      t
   <chr>
                  <chr>
                                      <chr>
                                                            <chr>
                                                             <NA>
  /results/461
                  results(student)
                                       2019-09-25 11:30:28
                                       2019-09-25 11:30:30
                                                             <NA>
  /results/461
                  results(student)
                  student info btn
  /results/461
                                       2019-09-25 11:30:34
                                                             "btn":"info","gid":
  /results/461
                  student info btn
                                       2019-09-25 11:30:36
                                                             "btn":"info","qid":
                  student info btn
  /results/461
                                       2019-09-25 11:31:30
                                                             "btn":"info","gid":
  /results/461
                  student_info_btn
                                       2019-09-25 11:31:38
                                                             "btn":"info","gid":
  /results/461
                  Attributes(student)
                                       2019-09-25 11:33:20
                                                             <NA>
  /results/461
                                       2019-09-25 11:33:29
                                                             <NA>
                  results(student)
                                                             <NA>
  /results/787
                  results(student)
                                       2019-09-25 11:43:31
                                       2019-09-25 11:46:55
10 /results/787
                                                             <NA>
                  results(student)
# ... with many, many, many more rows
```

Lesson 4

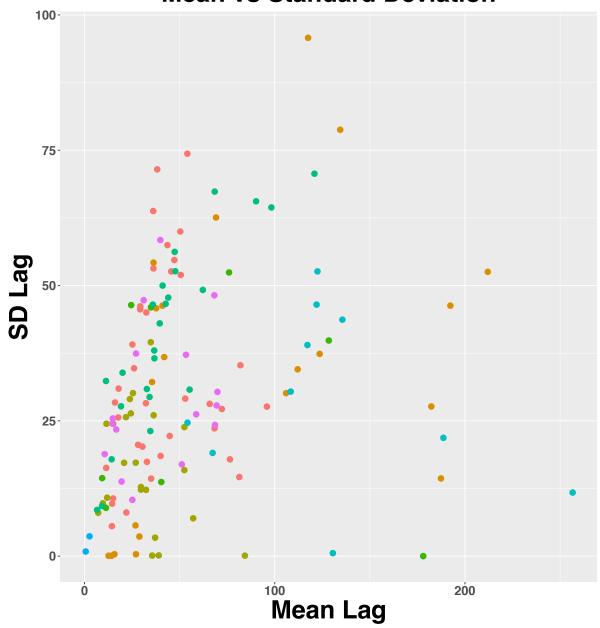
- Quality Control
 - Dummy items
 - Response time data (Qualtrics hack)
 - Open text responses to surveys
- Contingency Plan
 - End users are used to having "delete" mean "put in trash"
 - Choosing not to take the exam

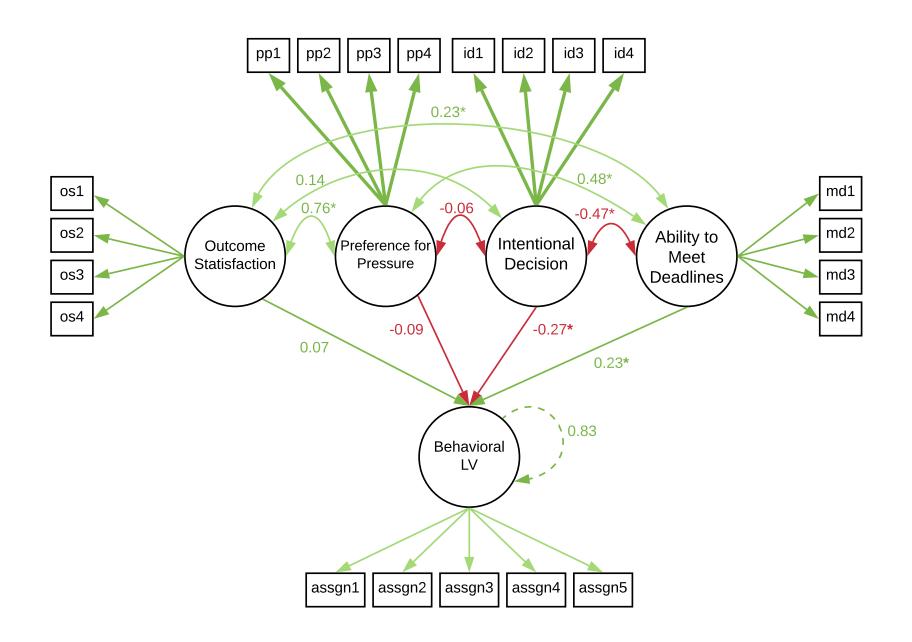
Lesson 5

System paradata (Process data) can provide a wealth of information


Example: Procrastination

- Active Procrastination (Chu & Choi, 2005)
 - Criticisms (e.g. Delay?) (Krause & Freund, 2014)
- Attempting to validate a survey scale via process data


Data Source


- Data
 - lag = Assignment Deadline Assignment Submission Time
 - across 5 Assignments
 - Active Procrastination Scale
- ▶ Modeling lag as a behavioral indicator of procrastination

Model Fit

Model Fit

Model	cfi	tli	rmsea (5%)	rmsea (95%)	srmr
Active Procrastination	0.964	0.957	0.074	0.082	0.071

Summary

- Summary
- Limitations
- Future Studies
 - Estimate Latent Procrastination to provide reminders
 - Other applications

Future

Future 38

Future 39

A holistic student view

- Multiple Data Sources
 - Assessment Data
 - **Big 5**
 - Statistics Anxiety
 - Free Response
 - Help Forum

Future 40

Thank You

Thank You 41

Acknowledgments

Thank you

Questions?

abroders@nd.edu

Thank You 43