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Key Learning Technologies

• Massive Open Online Course

• Intelligent Tutoring Systems
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Massive Open Online Course (MOOC)
• Self-contained, streamlined instruction

– Evidence-based design

• Active learning
– Multi-media, multi-modal, multi-activity

• Potentially scalable
– Machine Learning @ Stanford (Ng, 2011) 1.1M

– Learning how to learn @ UCSD (Sejnowski & Oakley, 2014) 1.2M
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(Collins, 2013)
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Traditional MOOC
• Mostly, collection 

of videos
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Traditional MOOC
• … and some 

assessments.
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MOOC: Challenges
• Lack of individualization

– Ineffective learning (no learning!)
– Disengagement / drop-out

• Lack of systematic content creation & 
validation
– Where should we start from?
– How can we iteratively make it better?
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Intelligent Tutoring Systems (Cognitive Tutors)
• Aimed mastery learning

– Focus on a particular type of problem

• Macro- and micro-level adaptations
– Adaptive problem sequence 

• Knowledge Tracing
– Immediate feedback and just-in-time hint

• Model Tracing
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ITS: Challenges
• Scalability / Generality

– Too expensive to build
– Mostly good for procedural skill acquisition

• What about conceptual learning?

• Robustness of Learning
– Luck of learning to solve with justifications
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Summary of Challenges
• To overcome the issues of MOOC and ITS, 

there is a critical need to innovate a 
technology that
– provides adaptive instruction while promoting 

synergetic learning

• An evidence-based curriculum development is 
essential
– to build a large scale online course
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Our Solution
• Evidence-based learning engineering 

methods
– PASTEL (Pragmatic methods to develop Adaptive and Scalable 

Technologies for next generation E-Learning)

• Adaptive Online Courseware
–CyberBook

= MOOC + Intelligent Tutoring Systems + Adaptive 
Control

Matsuda & Shimmei Rafine @ MARC 2019 10



COMPUTER SCIENCE

CyberBook
• “Adaptive” online courseware

– Problem sequencing
– Just-in-time scaffolding
– Mastery practice (aka cognitive tutoring)
– Proactive detection of unproductive failure 
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CyberBook: 
Example
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CyberBook: Adaptive Scaffolding
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Skill Name Association 
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CyberBook: 
Cognitive 
Tutor 
Integration
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Technological Challenges
• Automatic validation of courseware content

• Rapid creation of a valid skill model

• Affordable authoring of cognitive tutors

• Automatic creation of formative assessments

• Reliable prediction of unproductive failure
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Technology Innovations
• PASTEL: Evidence-based, iterative learning 

engineering methods
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Problem: RAFINE
• Creating effective large-scale online course 

is very hard [Slavich & Zimbardo, 2012] [Clark & Mayer, 2003]

• Existing design theories still require iterative 
engineering [Fishman et al., 2004] 

– Identifying issues with the courseware is one 
of the challenge.

Matsuda & Shimmei Rafine @ MARC 2019 19



COMPUTER SCIENCE

SOLUTION: RAFINE
• RAFINE (Reinforcement learning Application For 

INcremental courseware Engineering)

– Automatically identifies relatively less 
effective instructional components on 
existing online courseware based on actual 
students’ learning data
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Reinforcement Learning
• Given a state transition graph (MDP) with 

goals and a reward for each state, 

• Compute a policy which shows optimal 
actions to be taken at a particular state
– to maximize a likelihood of reaching to 

desired goals [Sutton et al.,2018]
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Learning Trajectory Graph
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Converse Policy
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Atomic vs. Holistic Policy Interpretation
• Atomic interpretation of a policy

– An optimal action at each state is predicted. 
– Tells which action should (or should not) be taken.

• Holistic interpretation of a policy
– A collection of actions suggested as a policy over all

states is analyzed.
– Tells which actions are useful (or useless).
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Atomic vs. Holistic Interpretation
• Hypothesis:

– By holistically analyzing a policy action set, 
relatively ineffective actions can be identified.

• In the current application…
– A holistic interpretation of a policy action set 

induced from learning trajectory data will suggest 
the effectiveness of instructional components
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Converse Policy
• The action that minimizes the value 

function

• The action that yields the least successful 
learning
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Reward

• 8 ", 5, "9 = ?
−0.14 (EF " = EF "9 < 0.85)
−0.05 (EF " < EF "9 < 0.85)
0.95 0.85 ≤ EF "9

• EF " :E5"MNOFP QNRNF 5M "M5MN "

• A reward at state s become the greatest 
when the successor state s’ is a terminal 
state (ml(s’) ≥ 0.85)
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Frequency Heuristic
• Relatively ineffective instructional components 

tend to appear in a converse policy action set 
more frequently than effective ones

• Instructional components that appear in a 
converse policy more than a pre-defined cut-
off are included in a recommendation for 
refinement
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Frequency Heuristic (Cont.)
• How frequent is “frequent”? 

– Mean freq. (M) � Standard deviation of freq. (SD)
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Example: Frequency Heuristic (M‒SD)
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Example: Frequency Heuristic (M+SD)
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Research Questions
1. Can a converse policy correctly differentiate 

ineffective instructional components from effective 
ones?

2. How robust is the converse policy to detect relatively 
ineffective instructional components against different 
conditions of learning data?

3. How accurately does the frequency heuristic 
compose a recommendation?
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Simulation Study: Method
• To apply RAFINE, each instructional component is 

needed to be tagged with a skill
– No such online courseware is currently available

• As a proof of concept, hypothetical students’ 
learning trajectories on mock online courseware
were used
– Justifies future efforts

Matsuda & Shimmei Rafine @ MARC 2019 34



COMPUTER SCIENCE

Simulation Study: Method
• Mock online courseware

– 9 videos, 9 quizzes with 9 hints in total
• coded as  either effective or ineffective

– Masterly level (ML) increased at each 
commitment to an instructional component
• Effective instructional compo. increases ML 

more than ineffective ones
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Simulation Study: Data
• Quality of courseware (effective : ineffective)

– High (8:1), Med (4:5), Low (1:8)

• Contrast in the impact of taking an effective vs. ineffective 
instructional compo. on mastery level
– Large, Moderate, Small

• In total 9 learning scenarios
– Quality (High, Med, Low) � Contrast (L,M,S)
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Simulation Study: Data (Cont.)
• For each scenarios, 100 instances of course offerings were 

simulated each with 1,000 simulated students
– 1 Learning trajectory Graph (LTG) consists of 1,000 

students data.

• Converse policy was computed for each LTG from each 9 
learning scenarios 
– 100 converse policies for each scenarios
– Total 900 converse policies == 900 recommendations
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Converse policy as a quality indicator
• Compare the frequency of individual component 

in policy action set

• Normalized Frequency (NF) of instructional 
compo. for skill S

– |UV W |

|UX W |
=

Num. of states in the LTG where
Y is the policy ac\on

Num of states where
Y was taken.
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Comparison of the mean NF (inef. vs. ef.)
Contrast

Large Moderate Small

Quality Inef. Ef. Inef. Ef. Inef. Ef.

High 0.7±0.2 0.2±0.1 0.7+0.1 0.1±0.1 0.5±0.1 0.2±0.1

(effect size=4.0) (5.7) (3.1)

Med. 0.4±0.1 0.1±0.05 0.4±0.1 0.1±0.04 0.4±0.1 0.2±0.1

(7.9) (8.5) (3.6)

Low 0.4±0.1 0.04±0.04 0.4±0.1 0.04±0.03 0.4±0.1 0.1±0.1

(9.2) (10.0) (4.5)
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Converse Policy as a Quality Indicator
• Frequency heuristic hypothesis was supported

– Ineffective instructional components were selected 
more than effective as a converse policy

• Converse policy was robust enough to discriminate 
the effectiveness of the instructional component 
regardless of quality and contrast of online 
courseware
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Frequency Heuristic for recommendation
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Frequency Heuristic for recommendation
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Frequency Heuristic for Recommendation
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Frequency Heuristic for Recommendation
• Over 90% of ineffective instructional components 

were correctly taken as a recommendation when 
an appropriate cut-off was used based on the 
maturity of the courseware

Matsuda & Shimmei Rafine @ MARC 2019 44



COMPUTER SCIENCE

Conclusion (RAFINE)
• Holistic interpretation over a converse 

policy is a powerful analytic tool for the 
quality control

• Converse policy computed based on actual 
learning data will provide an insight into 
the usefulness of instructional component 
of online courseware
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Limitations and Future study
• How much students’ individual differences 

affect the “effectiveness” of each 
instructional component
– Assume that the majority vote applies

• Evaluate RAFINE method in authentic 
learning settings
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Conclusion (Self-Improving System)
• With RAFINE, we have half-built self-

improving adaptive online courseware

• The remaining half is to let the machine 
automatically generate the content
– Semi-automated creation of ITS
– Question generation
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Thank you!


